Abstract

This paper presents an improved method for optimizing the singularity structure of hexahedral meshes using various dual operations. Our approach aims at reducing element distortion by decomposing complex singular nodes into singular curves using high-quality sheet insertion at proper locations. Then, singular curves that meet the topological parallel requirements are paired to perform the semantic column operation, which eliminates the singular curves. Finally, the topological structure is further optimized by collapsing sheets, resulting in a valid hex mesh with a simpler structure. Compared to existing hexahedral mesh simplification methods, our approach can generate higher quality meshes. Experimental results demonstrate the effectiveness of the proposed method.

References

1.
Pietroni
,
N.
,
Campen
,
M.
,
Sheffer
,
A.
,
Cherchi
,
G.
,
Bommes
,
D.
,
Gao
,
X.
,
Scateni
,
R.
,
Ledoux
,
F.
,
Remacle
,
J.
, and
Livesu
,
M.
,
2022
, “
Hex-Mesh Generation and Processing: A Survey
,”
ACM Trans. Graph.
,
42
(
2
), pp.
1
44
.
2.
Shen
,
C.
,
Gao
,
S.
, and
Wang
,
R.
,
2021
, “
Topological Operations for Editing the Singularity on a Hex Mesh
,”
Eng. Comput.
,
37
(
2
), pp.
1357
1375
.
3.
Bern
,
M.
,
Eppstein
,
D.
, and
Erickson
,
J.
,
2002
, “
Flipping Cubical Meshes
,”
Eng. Comput.
,
18
(
3
), pp.
173
187
.
4.
Tautges
,
T. J.
, and
Knoop
,
S. E.
,
2003
, “
Topology Modification of Hexahedral Meshes Using Atomic Dual-Based Operations
,”
Proceedings of the 12th International Meshing Roundtable, IMR 2003
,
Santa Fe, NM
,
Sept. 14–17
, pp.
415
423
.
5.
Tchon
,
K.
,
Dompierre
,
J.
, and
Camarero
,
R.
,
2002
, “
Conformal Refinement of All-Quadrilateral and All-Hexahedral Meshes According to an Anisotropic Metric
,”
Proceedings of the 11th International Meshing Roundtable, IMR 2002
,
Ithaca, NY
,
Sept. 15–18
, pp.
231
242
.
6.
Benzley
,
S. E.
,
Harris
,
N. J.
,
Scott
,
M. A.
,
Borden
,
M. J.
, and
Owen
,
S. J.
,
2005
, “
Conformal Refinement and Coarsening of Unstructured Hexahedral Meshes
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
4
), pp.
330
337
.
7.
Parrish
,
M.
,
Borden
,
M. J.
,
Staten
,
M. L.
, and
Benzley
,
S. E.
,
2007
, “
A Selective Approach to Conformal Refinement of Unstructured Hexahedral Finite Element Meshes
,”
Proceedings of the 16th International Meshing Roundtable
,
Seattle, WA
,
Oct. 14–17
, pp.
251
268
.
8.
Shepherd
,
J. F.
,
Dewey
,
M. W.
,
Woodbury
,
A. C.
,
Benzley
,
S. E.
,
Staten
,
M. L.
, and
Owen
,
S. J.
,
2010
, “
Adaptive Mesh Coarsening for Quadrilateral and Hexahedral Meshes
,”
Finite Elem. Anal. Des.
,
46
(
1
), pp.
17
32
. Mesh Generation – Applications and Adaptation.
9.
Woodbury
,
A. C.
,
Shepherd
,
J. F.
,
Staten
,
M. L.
, and
Benzley
,
S. E.
,
2008
, “
Localized Coarsening of Conforming All-Hexahedral Meshes
,”
Proceedings of the 17th International Meshing Roundtable
,
Pittsburgh, PA
,
Oct. 12–15
.
10.
Borden
,
M. J.
,
Benzley
,
S. E.
, and
Shepherd
,
J. F.
,
2002
, “
Hexahedral Sheet Extraction
,”
International Meshing Roundtable Conference
,
Ithaca, NY
,
Sept. 15–18
.
11.
Daniels
,
J.
,
Silva
,
C. T.
,
Shepherd
,
J.
, and
Cohen
,
E.
,
2008
, “
Quadrilateral Mesh Simplification
,”
ACM Trans. Graph. (TOG)
,
27
(
5
), pp.
1
9
.
12.
Tarini
,
M.
,
Pietroni
,
N.
,
Cignoni
,
P.
,
Panozzo
,
D.
, and
Puppo
,
E.
,
2010
, “
Practical Quad Mesh Simplification
,”
Comput. Graph. Forum
,
29
(
2
), pp.
407
418
.
13.
Gao
,
X.
,
Deng
,
Z.
, and
Chen
,
G.
,
2015
, “
Hexahedral Mesh Re-Parameterization From Aligned Base-Complex
,”
ACM Trans. Graph.
,
34
(
4
), p.
142
.
14.
Cherchi
,
G.
,
Livesu
,
M.
, and
Scateni
,
R.
,
2016
, “
Polycube Simplification for Coarse Layouts of Surfaces and Volumes
,”
Comput. Graph. Forum
,
35
(
5
), pp.
11
20
.
15.
Tarini
,
M.
,
Puppo
,
E.
,
Panozzo
,
D.
,
Pietroni
,
N.
, and
Cignoni
,
P.
,
2011
, “
Simple Quad Domains for Field Aligned Mesh Parametrization
,”
Proceedings of the 2011 SIGGRAPH Asia Conference, SA’11
,
Hong Kong, China
,
Dec. 12–15
.
16.
Gao
,
X.
,
Panozzo
,
D.
,
Wang
,
W.
,
Deng
,
Z.
, and
Chen
,
G.
,
2017
, “
Robust Structure Simplification for Hex Re-Meshing
,”
ACM Trans. Graph.
,
36
(
6
), p.
185
.
17.
Xu
,
G.
,
Ling
,
R.
,
Zhang
,
Y. J.
,
Xiao
,
Z.
,
Ji
,
Z.
, and
Rabczuk
,
T.
,
2021
, “
Singularity Structure Simplification of Hexahedral Meshes Via Weighted Ranking
,”
Comput. Aided Des.
,
130
, p.
102946
.
18.
Zhang
,
P.
,
Chiang
,
J. H.-H.
,
Fan
,
X. C.
, and
Mundilova
,
K.
,
2023
, “
Local Decomposition of Hexahedral Singular Nodes Into Singular Curves
,”
Comput. Aided Des.
,
158
, p.
103484
.
19.
Freitag
,
L. A.
,
1997
, “
On Combining Laplacian and Optimization-Based Mesh Smoothing Techniques
,” Technical Report,
Argonne National Laboratory (ANL)
,
Argonne, IL
.
20.
Vartziotis
,
D.
, and
Wipper
,
J.
,
2011
, “
A Dual Element Based Geometric Element Transformation Method for All-Hexahedral Mesh Smoothing
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
9–12
), pp.
1186
1203
.
21.
Ruiz-Gironés
,
E.
,
Roca
,
X.
, and
Sarrate
,
J.
,
2014
, “
Optimizing Mesh Distortion by Hierarchical Iteration Relocation of the Nodes on the Cad Entities
,”
Procedia Eng.
,
82
, pp.
101
113
.
22.
Knupp
,
P. M.
,
2000
, “
Achieving Finite Element Mesh Quality Via Optimization of the Jacobian Matrix Norm and Associated Quantities. Part II-A Framework for Volume Mesh Optimization and the Condition Number of the Jacobian Matrix
,”
Int. J. Numer. Methods Eng.
,
48
(
8
), pp.
1165
1185
.
23.
Livesu
,
M.
,
Sheffer
,
A.
,
Vining
,
N.
, and
Tarini
,
M.
,
2015
, “
Practical Hex-Mesh Optimization Via Edge-Cone Rectification
,”
ACM Trans. Graph. (TOG)
,
34
(
4
), pp.
1
11
.
24.
Xu
,
K.
,
Gao
,
X.
, and
Chen
,
G.
,
2018
, “
Hexahedral Mesh Quality Improvement Via Edge-Angle Optimization
,”
Comput. Graph.
,
70
(
SI
), pp.
17
27
.
25.
Wang
,
R.
,
Zheng
,
Z.
,
Yu
,
W.
,
Shao
,
Y.
, and
Gao
,
S.
,
2021
, “
Structure-Aware Geometric Optimization of Hexahedral Mesh
,”
Comput. Aided Des.
,
138
, p.
103050
.
26.
Wang
,
R.
,
Gao
,
S.
,
Zheng
,
Z.
, and
Chen
,
J.
,
2018
, “
Hex Mesh Topological Improvement Based on Frame Field and Sheet Adjustment
,”
Comput. Aided Des.
,
103
, pp.
103
117
.
27.
Wang
,
R.
,
Zheng
,
Z.
, and
Gao
,
S.
,
2020
, “
Stream Surface-Supported Fundamental Sheets Insertion Toward High-Quality Hex Meshing
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
6
), p.
061008
.
28.
Shen
,
C.
,
Wang
,
R.
,
Gao
,
S.
, and
Wu
,
H.
,
2022
, “
Cost-Minimizing Hexahedral Mesh Refinement by Sheet Inflation
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
4
), p.
041002
.
29.
Optimization
,
G.
,
2022
,
Gurobi Optimizer Reference Manual
, 9.5 ed., p.
6
.
30.
Wang
,
R.
,
Shen
,
C.
,
Chen
,
J.
,
Wu
,
H.
, and
Gao
,
S.
,
2017
, “
Sheet Operation Based Block Decomposition of Solid Models for Hex Meshing
,”
Comput. Aided Des.
,
85
(
SI
), pp.
123
137
.
31.
Knupp
,
P. M.
,
2003
, “
Algebraic Mesh Quality Metrics for Unstructured Initial Meshes
,”
Finite Elem. Anal. Des.
,
39
(
3
), pp.
217
241
.
You do not currently have access to this content.