Abstract

The presence of gaps and spurious nonphysical artifacts in datasets is a nearly ubiquitous problem in many scientific and engineering domains. In the context of multiphysics numerical models, data gaps may arise from lack of coordination between modeling elements and limitations of the discretization and solver schemes employed. In the case of data derived from physical experiments, the limitations of sensing and data acquisition technologies, as well as myriad sources of experimental noise, may result in the generation of data gaps and artifacts. In the present work, we develop and demonstrate a machine learning (ML) meta-framework for repairing such gaps in multiphysics datasets. A unique “cross-training” methodology is used to ensure that the ML models capture the underlying multiphysics of the input datasets, without requiring training on datasets free of gaps/artifacts. The general utility of this approach is demonstrated by the repair of gaps in a multiphysics dataset taken from hypervelocity impact simulations. Subsequently, we examine the problem of removing scan artifacts from X-ray computed microtomographic (XCMT) datasets. A unique experimental methodology for acquiring XCMT data, wherein articles are scanned multiple times under different conditions, enables the ready identification of artifacts, their removal from the datasets, and the filling of the resulting gaps using the ML framework. This work concludes with observations regarding the unique features of the developed methodology, and a discussion of potential future developments and applications for this technology.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Steuben
,
J. C.
,
Graber
,
B. D.
,
Iliopoulos
,
A. P.
, and
Michopoulos
,
J. G.
,
2022
, “
X-Ray Marching for the Computational Modeling of Tomographic Systems Applied to Materials Applications
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO
,
Aug. 14–17
, Vol.
86212
,
American Society of Mechanical Engineers
, p.
V002T02A035
.
2.
Turner
,
C. J.
, and
Crawford
,
R. H.
,
2005
, “
Selecting an Appropriate Metamodel: The Case for NURBs Metamodels
,”
31st Design Automation Conference, Parts A and B of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Long Beach, CA
,
Sept. 24–28
, Vol.
2
, pp.
759
771
.
3.
Steuben
,
J. C.
,
Geltmacher
,
A. B.
,
Rodriguez
,
S. N.
,
Graber
,
B. D.
,
Iliopoulos
,
A. P.
, and
Michopoulos
,
J. G.
,
2023
, “
Multiphysics Missing Data Synthesis (MiDaS): A Machine-Learning Approach for Mitigating Data Gaps and Artifacts
,”
ASME 2023 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 20–23
.
4.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T. W.
,
2001
, “
Comparative Studies of Metamodelling Techniques Under Multiple Modelling Criteria
,”
Struct. Multidiscipl. Optim.
,
23
, pp.
1
13
.
5.
Kleijnen
,
J. P.
, and
Sargent
,
R. G.
,
2000
, “
A Methodology for Fitting and Validating Metamodels in Simulation
,”
Eur. J. Oper. Res.
,
120
(
1
), pp.
14
29
.
6.
Alizadeh
,
R.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2020
, “
Managing Computational Complexity Using Surrogate Models: A Critical Review
,”
Res. Eng. Design
,
31
(
3
), pp.
275
298
.
7.
Huang
,
G.
,
2021
, “
Missing Data Filling Method Based on Linear Interpolation and Lightgbm
,”
J. Phys. Conf. Series
,
1754
(
1
), p.
012187
.
8.
Myers
,
R. H.
,
Montgomery
,
D. C.
, and
Christine
,
M.
,
2009
,
Anderson Cook, CM: Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
John Wiley & Sons
,
New York
.
9.
Dinh
,
H. Q.
,
Turk
,
G.
, and
Slabaugh
,
G.
,
2002
, “
Reconstructing Surfaces by Volumetric Regularization Using Radial Basis Functions
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
24
(
10
), pp.
1358
1371
.
10.
Cressie
,
N.
,
1990
, “
The Origins of Kriging
,”
Math. Geol.
,
22
(
3
), pp.
239
252
.
11.
Schulz
,
E.
,
Speekenbrink
,
M.
, and
Krause
,
A.
,
2018
, “
A Tutorial on Gaussian Process Regression: Modelling, Exploring, and Exploiting Functions
,”
J. Math. Psychol.
,
85
, pp.
1
16
.
12.
Sandwell
,
D. T.
,
1987
, “
Biharmonic Spline Interpolation of GEOS-3 and Seasat Altimeter Data
,”
Geophys. Res. Lett.
,
14
(
2
), pp.
139
142
.
13.
Friedman
,
J. H.
,
1991
, “
Multivariate Adaptive Regression Splines
,”
Ann. Stat.
,
19
(
1
), pp.
1
67
.
14.
Turner
,
C.
,
Crawford
,
R.
, and
Campbell
,
M.
,
2007
, “
Global Optimization of Nurbs-Based Metamodels
,”
Eng. Optim.
,
39
(
3
), pp.
245
269
.
15.
Specht
,
D. F.
,
1991
, “
A General Regression Neural Network
,”
IEEE Trans. Neural Netw.
,
2
(
6
), pp.
568
576
.
16.
Eason
,
J.
, and
Cremaschi
,
S.
,
2014
, “
Adaptive Sequential Sampling for Surrogate Model Generation With Artificial Neural Networks
,”
Comput. Chem. Eng.
,
68
, pp.
220
232
.
17.
Hearst
,
M. A.
,
Dumais
,
S. T.
,
Osuna
,
E.
,
Platt
,
J.
, and
Scholkopf
,
B.
,
1998
, “
Support Vector Machines
,”
IEEE Intell. Syst. Appl.
,
13
(
4
), pp.
18
28
.
18.
Awad
,
M.
,
Khanna
,
R.
,
Awad
,
M.
, and
Khanna
,
R.
,
2015
, “Support Vector Regression,”
Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers
, Apress Open, Berkeley CA, pp.
67
80
.
19.
Quinlan
,
J. R.
,
1996
, “
Learning Decision Tree Classifiers
,”
ACM Comput. Surv. (CSUR)
,
28
(
1
), pp.
71
72
.
20.
Belyaev
,
M.
,
Burnaev
,
E.
,
Kapushev
,
E.
,
Panov
,
M.
,
Prikhodko
,
P.
,
Vetrov
,
D.
, and
Yarotsky
,
D.
,
2016
, “
Gtapprox: Surrogate Modeling for Industrial Design
,”
Adv. Eng. Softw.
,
102
, pp.
29
39
.
21.
Friedman
,
J. H.
,
2001
, “
Greedy Function Approximation: A Gradient Boosting Machine
,”
Ann. Stat.
,
29
(
5
), pp.
1189
1232
.
22.
Holloway
,
J.
,
Helmstedt
,
K. J.
,
Mengersen
,
K.
, and
Schmidt
,
M.
,
2019
, “
A Decision Tree Approach for Spatially Interpolating Missing Land Cover Data and Classifying Satellite Images
,”
Remote Sens.
,
11
(
15
), p.
1796
.
23.
Yates
,
F.
,
1933
, “
The Analysis of Replicated Experiments When the Field Results Are Incomplete
,”
Empire J. Exp. Agric.
,
1
(
2
), pp.
129
142
.
24.
Everson
,
R.
, and
Sirovich
,
L.
,
1995
, “
Karhunen–Loeve Procedure for Gappy Data
,”
JOSA A
,
12
(
8
), pp.
1657
1664
.
25.
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2022
,
Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control
,
Cambridge University Press
,
Cambridge, UK
.
26.
Gunes
,
H.
,
Sirisup
,
S.
, and
Karniadakis
,
G. E.
,
2006
, “
Gappy Data: To Krig or Not to Krig?
,”
J. Comput. Phys.
,
212
(
1
), pp.
358
382
.
27.
Bui-Thanh
,
T.
,
Damodaran
,
M.
, and
Willcox
,
K.
,
2004
, “
Aerodynamic Data Reconstruction and Inverse Design Using Proper Orthogonal Decomposition
,”
AIAA J.
,
42
(
8
), pp.
1505
1516
.
28.
Farhat
,
C.
,
Avery
,
P.
,
Chapman
,
T.
, and
Cortial
,
J.
,
2014
, “
Dimensional Reduction of Nonlinear Finite Element Dynamic Models With Finite Rotations and Energy-Based Mesh Sampling and Weighting for Computational Efficiency
,”
Int. J. Numer. Methods Eng.
,
98
(
9
), pp.
625
662
.
29.
Carlberg
,
K.
,
Farhat
,
C.
,
Cortial
,
J.
, and
Amsallem
,
D.
,
2013
, “
The GNAT Method for Nonlinear Model Reduction: Effective Implementation and Application to Computational Fluid Dynamics and Turbulent Flows
,”
J. Comput. Phys.
,
242
, pp.
623
647
.
30.
Chaturantabut
,
S.
, and
Sorensen
,
D. C.
,
2010
, “
Nonlinear Model Reduction via Discrete Empirical Interpolation
,”
SIAM J. Sci. Comput.
,
32
(
5
), pp.
2737
2764
.
31.
Rodriguez
,
S. N.
,
Iliopoulos
,
A. P.
,
Carlberg
,
K. T.
,
Brunton
,
S. L.
,
Steuben
,
J. C.
, and
Michopoulos
,
J. G.
,
2022
, “
Projection-Tree Reduced-Order Modeling for Fast n-Body Computations
,”
J. Comput. Phys.
,
459
, p.
111141
.
32.
Cicci
,
L.
,
Fresca
,
S.
, and
Manzoni
,
A.
,
2022
, “
Deep-hyromnet: A Deep Learning-Based Operator Approximation for Hyper-Reduction of Nonlinear Parametrized PDEs
,”
J. Sci. Comput.
,
93
(
2
), p.
57
.
33.
Kim
,
Y.
,
Choi
,
Y.
,
Widemann
,
D.
, and
Zohdi
,
T.
,
2020
, “
Efficient Nonlinear Manifold Reduced Order Model
,” Neual Information Pocessing Systems (NeurIPS) Online Conference, Dec 6–12, arXiv preprint arXiv:2011.07727. https://arxiv.org/abs/2011.07727
34.
Chen
,
P. Y.
,
Chiaramonte
,
M. M.
,
Grinspun
,
E.
, and
Carlberg
,
K.
,
2023
, “
Model Reduction for the Material Point Method via an Implicit Neural Representation of the Deformation Map
,”
J. Comput. Phys.
,
478
, p.
111908
.
35.
Hsieh
,
J.
,
2003
,
Computed Tomography: Principles, Design, Artifacts, and Recent Advances
,
SPIE Press monograph, SPIE Press
,
Bellingham, WA
.
36.
Dasch
,
C. J.
,
1992
, “
One-Dimensional Tomography: A Comparison of Abel, Onion-Peeling, and Filtered Backprojection Methods
,”
Appl. Opt.
,
31
(
8
), pp.
1146
1152
.
37.
Katsevich
,
A.
,
2004
, “
An Improved Exact Filtered Backprojection Algorithm for Spiral Computed Tomography
,”
Adv. Appl. Math.
,
32
(
4
), pp.
681
697
.
38.
Jin
,
P.
,
Bouman
,
C. A.
, and
Sauer
,
K. D.
,
2013
, “
A Method for Simultaneous Image Reconstruction and Beam Hardening Correction
,”
2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC)
,
Seoul, South Korea
,
Oct. 26–Nov. 2
,
IEEE
, pp.
1
5
.
39.
Boas
,
F. E.
, and
Fleischmann
,
D.
,
2011
, “
Evaluation of Two Iterative Techniques for Reducing Metal Artifacts in Computed Tomography
,”
Radiology
,
259
(
3
), pp.
894
902
.
40.
Steuben
,
J. C.
,
Michopoulos
,
J. G.
,
Iliopoulos
,
A. P.
,
Graber
,
B. D.
, and
Birnbaum
,
A. J.
,
2021
, “
Multiscale Tomographic Wave–Matter Interaction Modeling to Enable Artifact-Free Material Defect Reconstruction
,”
J. Comput. Inf. Sci. Eng.
,
21
(
5
), p.
050901
.
41.
Jin
,
R.
,
Chen
,
W.
, and
Sudjianto
,
A.
,
2002
, “
On Sequential Sampling for Global Metamodeling in Engineering Design
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Canada
,
36223
, pp.
539
548
.
42.
Vehtari
,
A.
,
Gelman
,
A.
, and
Gabry
,
J.
,
2017
, “
Practical Bayesian Model Evaluation Using Leave-One-Out Cross-Validation and Waic
,”
Stat. Comput.
,
27
(
5
), pp.
1413
1432
.
43.
Stein
,
C. M.
,
1981
, “
Estimation of the Mean of a Multivariate Normal Distribution
,”
Ann. Stat.
,
9
(
6
), .pp.
1135
1151
.
44.
Fienberg
,
S. E.
,
1970
, “
An Iterative Procedure for Estimation in Contingency Tables
,”
Ann. Math. Stat.
,
41
(
3
), pp.
907
917
.
45.
Terrell
,
G. R.
, and
Scott
,
D. W.
,
1992
, “
Variable Kernel Density Estimation
,”
Ann. Stat.
,
20
(
3
), pp.
1236
1265
.
46.
Reynolds
,
D. A.
,
2009
, “
Gaussian Mixture Models
,”
Encyclopedia Biom.
,
741
, pp.
659
663
.
47.
De Boer
,
P.-T.
,
Kroese
,
D. P.
,
Mannor
,
S.
, and
Rubinstein
,
R. Y.
,
2005
, “
A Tutorial on the Cross-Entropy Method
,”
Ann. Oper. Res.
,
134
(
1
), pp.
19
67
.
48.
Wolfram Research Inc.
,
2022
, “Mathematica, Version 13.0,” Champaign, IL.
49.
Islam
,
S. T.
,
Ma
,
W.
,
Michopoulos
,
J. G.
, and
Wang
,
K.
,
2023
, “
Plasma Formation in Ambient Fluid From Hypervelocity Impacts
,”
Extreme Mech. Lett.
,
58
, p.
101927
.
50.
Feldkamp
,
L. A.
,
Davis
,
L. C.
, and
Kress
,
J. W.
,
1984
, “
Practical Cone-Beam Algorithm
,”
JOSA A
,
1
(
6
), pp.
612
619
.
51.
Savitzky
,
A.
, and
Golay
,
M. J.
,
1964
, “
Smoothing and Differentiation of Data by Simplified Least Squares Procedures
,”
Anal. Chem.
,
36
(
8
), pp.
1627
1639
.
You do not currently have access to this content.