Abstract

Bio-inspired robots provide solutions in many applications. Robots that can traverse and transport materials through confined areas are useful in disaster response, mining, mapping, and tunneling. The proposed robot is an inchworm-inspired robot that contracts and expands its body segments to move. It has spiky feet that are angled to only allow each foot to slide forward. It has a small frontal area compared to its length, and this allows it to travel through tight gaps or tunnels. Each segment uses two helical actuators as prismatic linkages to drive both forward movement and turning movement. These helical actuators transform the rotation of stepper motors into linear motion. Many linkage configurations were considered in designing this robot, and one without continuous singularities was selected. The robot stride consists of an extension phase and a contraction phase. In each phase, one foot is stationary, and one foot is moving. When each of the feet is in motion, the ground reaction force is assumed to be zero. The motion planning of the robot is designed so that the velocity and acceleration of each of the robot's rigid bodies are zero at the beginning and end of each movement phase. A 3D-printed prototype of the robot has been manufactured, and initial testing has shown that the foot spike design successfully allows the inchworm to shuffle forward. Testing the turning capabilities of this robot is ongoing.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Cao
,
J.
,
Liang
,
W.
,
Wang
,
Y.
,
Lee
,
H. P.
,
Zhu
,
J.
, and
Ren
,
Q.
,
2019
, “
Control of a Soft Inchworm Robot With Environment Adaptation
,”
IEEE Trans. Ind. Electron.
,
67
(
5
), pp.
3809
3818
.
2.
Hu
,
T.
,
Lu
,
X.
, and
Liu
,
J.
,
2023
, “
Inchworm-Like Soft Robot with Multimodal Locomotion Using an Acrylic Stick-Constrained Dielectric Elastomer Actuator
,”
Adv. Intell. Syst.
,
5
(
2
), p.
2200209
.
3.
Selvamuthu
,
M. G.
,
Tadakuma
,
R.
,
Fujiwara
,
N.
,
Yoshida
,
K.
,
Takagi
,
M.
,
Hoshino
,
H.
,
Suzuri
,
Y.
, and
Furukawa
,
H.
,
2023
, “
Development of Soft Inchworm Robot With Friction Control of Feet Using Double-Network Gel
,”
Adv. Robot.
,
37
(
6
), pp.
407
422
.
4.
Chang
,
A. H.
,
Freeman
,
C.
,
Mahendran
,
A. N.
,
Vikas
,
V.
, and
Vela
,
P. A.
,
2021
, “
Shape-Centric Modeling for Soft Robot Inchworm Locomotion
,”
Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Prague, Czech Republic
,
Sept. 27–Oct. 1
,
IEEE
, pp.
645
652
.
5.
Thomas
,
S.
,
Germano
,
P.
,
Martinez
,
T.
, and
Perriard
,
Y.
,
2021
, “
An Untethered Mechanically-Intelligent Inchworm Robot Powered by a Shape Memory Alloy Oscillator
,”
Sens. Actuators, A
,
332
, p.
113115
.
6.
Rahmani
,
M.
,
Ghanbari
,
A.
, and
Ettefagh
,
M. M.
,
2016
, “
Hybrid Neural Network Fraction Integral Terminal Sliding Mode Control of an Inchworm Robot Manipulator
,”
Mech. Syst. Signal Process
,
80
, pp.
117
136
.
7.
Roy
,
R. G.
, and
Ghoshal
,
D.
,
2020
, “
Grey Wolf Optimization-Based Second Order Sliding Mode Control for Inchworm Robot
,”
Robotica
,
38
(
9
), pp.
1539
1557
.
8.
Lam
,
T. L.
, and
Xu
,
Y.
,
2013
, “
Motion Planning for Tree Climbing With Inchworm-Like Robots
,”
J. Field Robot.
,
30
(
1
), pp.
87
101
.
9.
Pagano
,
D.
, and
Liu
,
D.
,
2017
, “
An Approach for Real-Time Motion Planning of an Inchworm Robot in Complex Steel Bridge Environments
,”
Robotica
,
35
(
6
), pp.
1280
1309
.
10.
Lin
,
T.-H.
,
Putranto
,
A.
,
Chen
,
P.-H.
,
Teng
,
Y.-Z.
, and
Chen
,
L.
,
2023
, “
High-Mobility Inchworm Climbing Robot for Steel Bridge Inspection
,”
Autom. Constr.
,
152
, p.
104905
.
11.
Xue
,
C.
,
Du
,
Q.
,
Ma
,
W.
, and
Geng
,
Y.
,
2023
, “
Research on Motion Control of Bionic Sucker Inchworm Robot Based on MPC
,”
IEEE Access
,
11
, pp.
92943
92958
.
12.
Ueno
,
S.
,
Takemura
,
K.
,
Yokota
,
S.
, and
Edamura
,
K.
,
2014
, “
Micro Inchworm Robot Using Electro-Conjugate Fluid
,”
Sens. Actuators, A
,
216
, pp.
36
42
.
13.
Shin
,
B.
,
Ha
,
J.
,
Lee
,
M.
,
Park
,
K.
,
Park
,
G. H.
,
Choi
,
T. H.
,
Cho
,
K.-J.
, and
Kim
,
H.-Y.
,
2018
, “
Hygrobot: A Self-Locomotive Ratcheted Actuator Powered by Environmental Humidity
,”
Sci. Rob.
,
3
(
14
), p.
eaar2629
.
14.
Lee
,
K.-m.
,
Kim
,
Y.
,
Paik
,
J. K.
, and
Shin
,
B.
,
2015
, “
Clawed Miniature Inchworm Robot Driven by Electromagnetic Oscillatory Actuator
,”
J. Bionic Eng.
,
12
(
4
), pp.
519
526
.
15.
Saab
,
W.
,
Racioppo
,
P.
,
Kumar
,
A.
, and
Ben-Tzvi
,
P.
,
2019
, “
Design of a Miniature Modular Inchworm Robot With an Anisotropic Friction Skin
,”
Robotica
,
37
(
3
), pp.
521
538
.
16.
Tanabe
,
K.
,
Shiota
,
M.
,
Kusui
,
E.
,
Iida
,
Y.
,
Kusama
,
H.
,
Kinoshita
,
R.
,
Tsukui
,
Y.
,
Minegishi
,
R.
,
Sunohara
,
Y.
, and
Fuchiwaki
,
O.
,
2023
, “
Precise Position Control of Holonomic Inchworm Robot Using Four Optical Encoders
,”
Micromachines
,
14
(
2
), p.
375
.
17.
Steiner
,
J. A.
,
Pham
,
L. N.
,
Abbott
,
J. J.
, and
Leang
,
K. K.
,
2022
, “
Modeling and Analysis of a Soft Endoluminal Inchworm Robot Propelled by a Rotating Magnetic Dipole Field
,”
ASME J. Mech. Rob.
,
14
(
5
), p.
051002
.
18.
Fu
,
K. S.
,
Gonzalez
,
R. C.
,
Lee
,
C. G.
, and
Freeman
,
H.
,
1987
,
Robotics: Control, Sensing, Vision, and Intelligence
, Vol.
1
,
McGraw-Hill
,
New York
.
19.
Xiang
,
Y.
,
Cruz
,
J.
,
Zaman
,
R.
, and
Yang
,
J.
,
2021
, “
Multi-Objective Optimization for Two-Dimensional Maximum Weight Lifting Prediction Considering Dynamic Strength
,”
Eng. Optim.
,
53
(
2
), pp.
206
220
.
20.
Wang
,
Q.
,
Xiang
,
Y.-J.
,
Kim
,
H.-J.
,
Arora
,
J. S.
, and
Abdel-Malek
,
K.
,
2005
, “
Alternative Formulations for Optimization-Based-Digital Human Motion Prediction
,” SAE Technical Paper No. 2005-01-2691.
21.
Xiang
,
Y.
,
2019
, “
An Inverse Dynamics Optimization Formulation With Recursive B-Spline Derivatives and Partition of Unity Contacts: Demonstration Using Two-Dimensional Musculoskeletal Arm and Gait
,”
ASME J. Biomech. Eng.
,
141
(
3
), p.
034503
.
22.
Xiang
,
Y.
, and
Arefeen
,
A.
,
2020
, “
Two-Dimensional Team Lifting Prediction With Floating-Base Box Dynamics and Grasping Force Coupling
,”
Multibody Syst. Dyn.
,
50
(
2
), pp.
211
231
.
23.
Qian
,
B.
, and
Cheng
,
H. H.
,
2018
, “
Bio-Inspired Coalition Formation Algorithms for Multirobot Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
2
), p.
021010
.
24.
Ghassemi
,
P.
, and
Chowdhury
,
S.
,
2020
, “
An Extended Bayesian Optimization Approach to Decentralized Swarm Robotic Search
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
5
), p.
051003
.
25.
Ren
,
B.
,
Luo
,
X.
,
Wang
,
Y.
, and
Chen
,
J.
,
2020
, “
A Gait Trajectory Control Scheme Through Successive Approximation Based on Radial Basis Function Neural Networks for the Lower Limb Exoskeleton Robot
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
3
), p.
031008
.
26.
Mo
,
S.
,
Zhou
,
C.
,
Li
,
X.
,
Yang
,
Z.
,
Cen
,
G.
, and
Huang
,
Y.
,
2023
, “
Dynamic Characteristics of Electromechanical Coupling and Fuzzy Control of Intelligent Joints for Robot Drive and Control
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
4
), p.
044502
.
27.
Hussain
,
S.
,
Jamwal
,
P. K.
,
Kapsalyamov
,
A.
, and
Ghayesh
,
M. H.
,
2021
, “
Numerical Framework and Design Optimization of an Intrinsically Compliant 3-DOF Parallel Robot
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
2
), p.
021008
.
28.
Al-Hussaini
,
S.
,
Dhanaraj
,
N.
,
Gregory
,
J. M.
,
Joseph
,
R. J.
,
Thakar
,
S.
,
Shah
,
B. C.
,
Marvel
,
J. A.
, and
Gupta
,
S. K.
,
2022
, “
Seeking Human Help to Manage Plan Failure Risks in Semi-Autonomous Mobile Manipulation
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
5
), p.
050906
.
29.
Ren
,
B.
,
Wang
,
Y.
, and
Chen
,
J.
,
2020
, “
Trajectory-Tracking-Based Adaptive Neural Network Sliding Mode Controller for Robot Manipulators
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
3
), p.
031009
.
You do not currently have access to this content.