Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This paper proposes and develops a digital twin-based method for assembly deviation analysis, which considers the impact of product shape deviations and uses assembly data in the product design phase to enhance the performance of assembly deviation analysis. First, the overall product assembly deviation analysis process based on twin information is studied. Second, a mating algorithm, which evaluates multi-source assembly information, is proposed and developed. Third, the interaction between adjacent mating feature deviation propagation and an updated iterative mechanism is examined. Finally, a digital twin assembly deviation analysis model based on the new proposed Jacobian-twin approach is established, and validation is conducted through a case study.

References

1.
Geis
,
A.
,
Husung
,
S.
,
Oberänder
,
A.
,
Weber
,
C.
, and
Adam
,
J.
,
2015
, “
Use of Vectorial Tolerances for Direct Representation and Analysis in CAD-Systems
,”
Procedia CIRP
,
27
, pp.
230
240
.
2.
Anwer
,
N.
,
Schleich
,
B.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2014
, “
From Solid Modelling to Skin Model Shapes: Shifting Paradigms in Computer-Aided Tolerancing
,”
CIRP Ann.
,
63
(
1
), pp.
137
140
.
3.
He
,
B.
,
Song
,
Y.
, and
Wang
,
Y.
,
2021
, “
Digital Twin-Driven Design and Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
030301
.
4.
Khodaygan
,
S.
, and
Movahhedy
,
M. R.
,
2011
, “
Tolerance Analysis of Assemblies With Asymmetric Tolerances by Unified Uncertainty–Accumulation Model Based on Fuzzy Logic
,”
Int. J. Adv. Manuf. Technol.
,
53
(
5–8
), pp.
777
788
.
5.
Khodaygan
,
S.
,
Movahhedy
,
M. R.
, and
Foumani
,
M. S.
,
2011
, “
Fuzzy-Small Degrees of Freedom Representation of Linear and Angular Variations in Mechanical Assemblies for Tolerance Analysis and Allocation
,”
Mech. Mach. Theory
,
46
(
4
), pp.
558
573
.
6.
Gavankar
,
P.
, and
Bedworth
,
D.
,
1991
, “
Stacked Tolerance Analysis and Allocation Using Assembly Models
,”
J. Intell. Manuf.
,
2
(
6
), pp.
365
377
.
7.
Peng
,
H.
,
Peng
,
Z.
, and
Zhou
,
Z.
,
2021
, “
Manufacturing Variation Modeling and Process Evaluation Based on Small Displacement Torsors and Functional Tolerance Requirements
,”
J. Adv. Mech. Des. Syst. Manuf.
,
15
(
3
), p.
JAMDSM0028
.
8.
Qureshi
,
A. J.
,
Dantan
,
J. Y.
,
Sabri
,
V.
,
Beaucaire
,
P.
, and
Gayton
,
N.
,
2012
, “
A Statistical Tolerance Analysis Approach for Over-Constrained Mechanism Based on Optimization and Monte Carlo Simulation
,”
Comput. Aided Des.
,
44
(
2
), pp.
132
142
.
9.
Dantan
,
J. Y.
,
Gayton
,
N.
,
Qureshi
,
A. J.
,
Lemaire
,
M.
, and
Etienne
,
A.
,
2013
, “
Tolerance Analysis Approach Based on the Classification of Uncertainty (Aleatory/Epistemic)
,”
Procedia CIRP
,
10
, pp.
287
293
.
10.
Beaucaire
,
P.
,
Gayton
,
N.
,
Duc
,
E.
, and
Dantan
,
J. Y.
,
2013
, “
Statistical Tolerance Analysis of a Mechanism With Gaps Based on System Reliability Methods
,”
Procedia CIRP
,
10
, pp.
2
8
.
11.
Yang
,
Z.
,
McWilliam
,
S.
,
Popov
,
A. A.
, and
Hussain
,
T.
,
2013
, “
A Probabilistic Approach to Variation Propagation Control for Straight Build in Mechanical Assembly
,”
Int. J. Adv. Manuf. Technol.
,
64
(
5–8
), pp.
1029
1047
.
12.
Cai
,
H.
,
Zhu
,
J.
, and
Zhang
,
W.
,
2021
, “
Quality Deviation Control for Aircraft Using Digital Twin
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
031008
.
13.
Moskowitz
,
H.
,
1999
, “
The Partial Information Case for Multivariate Tolerance Design Using Scrap or Rework Costs
,”
Int. J. Prod. Res.
,
37
(
1
), pp.
139
154
.
14.
Plante
,
R.
,
2002
, “
Multivariate Tolerance Design for a Quadratic Design Parameter Model
,”
IIE Trans.
,
34
(
6
), pp.
565
571
.
15.
Franciosa
,
P.
,
Gerbino
,
S.
, and
Patalano
,
S.
,
2010
, “
Variational Modeling and Assembly Constraints in Tolerance Analysis of Rigid Part Assemblies: Planar and Cylindrical Features
,”
Int. J. Adv. Manuf. Technol.
,
49
(
1–4
), pp.
239
251
.
16.
Zhou
,
B.
,
Zi
,
B.
, and
Zhu
,
W.
,
2021
, “
Static Response Analysis of a Dual Crane System Using Fuzzy Parameters
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
6
), p.
061006
.
17.
Mao
,
J.
,
Chen
,
D.
, and
Zhang
,
L.
,
2016
, “
Mechanical Assembly Quality Prediction Method Based on State Space Model
,”
Int. J. Adv. Manuf. Technol.
,
86
(
1–4
), pp.
107
116
.
18.
Schleich
,
B.
, and
Wartzack
,
S.
,
2016
, “
A Quantitative Comparison of Tolerance Analysis Approaches for Rigid Mechanical Assemblies
,”
Procedia CIRP
,
43
, pp.
172
177
.
19.
Schleich
,
B.
, and
Wartzack
,
S.
,
2018
, “
Novel Approaches for the Assembly Simulation of Rigid Skin Model Shapes in Tolerance Analysis
,”
Comput. Aided Des.
,
101
, pp.
1
11
.
20.
Cao
,
Y.
,
Liu
,
T.
,
Yang
,
J.
, and
Yan
,
H.
,
2019
, “
A Novel Tolerance Analysis Method for Three-Dimensional Assembly
,”
Proc. Inst. Mech. Eng., Part B
,
233
(
7
), pp.
1818
1827
.
21.
Sun
,
Q.
,
Zhao
,
B.
,
Liu
,
X.
,
Mu
,
X.
, and
Zhang
,
Y.
,
2019
, “
Assembling Deviation Estimation Based on the Real Mating Status of Assembly
,”
Comput. Aided Des.
,
115
, pp.
244
255
.
22.
Liu
,
T.
,
Cao
,
Y. L.
,
Zhao
,
Q.
,
Yang
,
J.
, and
Cui
,
L.
,
2019
, “
Assembly Tolerance Analysis Based on the Jacobian Model and Skin Model Shapes
,”
Assembly Autom.
,
39
(
2
), pp.
245
253
.
23.
Zhang
,
Q.
,
Jin
,
X.
,
Liu
,
Z.
,
Zhang
,
Z.
,
Fang
,
Y.
,
Zhang
,
Z.
, and
Ledoux
,
Y.
,
2020
, “
A New Approach of Surfaces Registration Considering Form Errors for Precise Assembly
,”
Assembly Autom.
,
40
(
6
), pp.
789
800
.
24.
Peng
,
Y.
,
Hao
,
L.
,
Huang
,
X.
, and
Li
,
S.
,
2022
, “
A Pre-Assembly Analysis Technology of Aircraft Components Based on Measured Data
,”
Meas. Sci. Technol.
,
33
(
7
), p.
075005
.
25.
Shi
,
S.
,
Liu
,
J.
,
Gong
,
H.
,
Shao
,
N.
, and
Anwer
,
N.
,
2024
, “
Assembly Accuracy Analysis and Phase Optimization of Aero-Engine Multistage Rotors Considering Surface Morphology and Non-Uniform Contact Deformation
,”
Precis. Eng.
,
88
, pp.
595
610
.
26.
Huang
,
J.
,
Liu
,
J.
,
Gong
,
H.
, and
Deng
,
X.
,
2023
, “
A Novel Active Sensing Method for Loosening Detection of Globe-Cone Joint Considering Assembly Uncertainties
,”
Mech. Syst. Signal Process
,
184
, p.
109738
.
27.
Lu
,
Y.
,
Liu
,
C.
,
Kevin
,
I.
,
Wang
,
K.
,
Huang
,
H.
, and
Xu
,
X.
,
2020
, “
Digital Twin-Driven Smart Manufacturing: Connotation, Reference Model, Applications and Research Issues
,”
Robot. Comput. Integr. Manuf.
,
61
, p.
101837
.
28.
Desrochers
,
A.
,
Ghie
,
W.
, and
Laperrière
,
L.
,
2003
, “
Application of a Unified Jacobian – Torsor Model for Tolerance Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
3
(
1
), pp.
2
14
.
You do not currently have access to this content.