Abstract

A Bayesian optimization procedure is presented for calibrating a multimechanism micromechanical model for creep to experimental data of F82H steel. Reduced activation ferritic martensitic (RAFM) steels based on Fe(8–9)%Cr are the most promising candidates for some fusion reactor structures. Although there are indications that RAFM steel could be viable for fusion applications at temperatures up to 600C, the maximum operating temperature will be determined by the creep properties of the structural material and the breeder material compatibility with the structural material. Due to the relative paucity of available creep data on F82H steel compared to other alloys such as Grade 91 steel, micromechanical models are sought for simulating creep based on relevant deformation mechanisms. As a point of departure, this work recalibrates a model form that was previously proposed for Grade 91 steel to match creep curves for F82H steel. Due to the large number of parameters (9) and cost of the nonlinear simulations, an automated approach for tuning the parameters is pursued using a recently developed Bayesian optimization for functional output (BOFO) framework (Huang et al., 2021, “Bayesian optimization of functional output in inverse problems,” Optim. Eng., 22, pp. 2553–2574). Incorporating extensions such as batch sequencing and weighted experimental load cases into BOFO, a reasonably small error between experimental and simulated creep curves at two load levels is achieved in a reasonable number of iterations. Validation with an additional creep curve provides confidence in the fitted parameters obtained from the automated calibration procedure to describe the creep behavior of F82H steel.

References

1.
Hirose
,
T.
,
Kato
,
T.
,
Sakasegawa
,
H.
,
Tanigawa
,
H.
, and
Nozawa
,
T.
,
2020
, “
Evaluation of Fatigue Properties of Reduced Activation Ferritic/Martensitic Steel, F82H for Development of Design Criteria
,”
Fusion Eng. Des.
,
160
, p.
111823
.
2.
Aduloju
,
S. C.
,
Kessel
,
C.
,
Youchison
,
D.
,
Rasheed
,
F.
, and
Nogradi
,
P., Jr.
,
2022
, “
Steady State Thermo-mechanics and Material Property Definition Framework for Analyzing DCLL Blanket in the Fusion Nuclear Science Facility
,”
Fusion Eng. Des.
,
183
, p.
113257
.
3.
Bhattacharya
,
A.
,
Levine
,
S. M.
,
Zinkle
,
S. J.
,
Chen
,
W.-Y.
,
Baldo
,
P.
,
Parish
,
C. M.
, and
Edmondson
,
P. D.
,
2022
, “
Radiation Induced Amorphization of Carbides in Additively Manufactured and Conventional Ferritic-martensitic Steels: In-Situ Experiments on Extraction Replicas
,”
J. Nucl. Mater.
,
563
, p.
153646
.
4.
Sannazzaro
,
G.
,
Barabash
,
V.
,
Kang
,
S.
,
Fernandez
,
E.
,
Kalinin
,
G.
,
Obushev
,
A.
,
Martínez
,
V.
,
Vázquez
,
I.
,
Fernández
,
F.
, and
Guirao
,
J.
,
2013
, “
Development of Design Criteria for ITER In-Vessel Components
,”
Fusion Eng. Des.
,
88
(
9–10
), pp.
2138
2141
.
5.
Nozawa
,
T.
,
Tanigawa
,
H.
,
Kojima
,
T.
,
Itoh
,
T.
,
Hiyoshi
,
N.
,
Ohata
,
M.
,
Kato
,
T.
, et al.,
2021
, “
The Status of the Japanese Material Properties Handbook and the Challenge to Facilitate Structural Design Criteria for DEMO In-Vessel Components
,”
Nucl. Fusion
,
61
(
11
), p.
116054
.
6.
Aduloju
,
S. C.
, and
Kessel
,
C.
,
2024
, “
Assessment of Thermal and Radiation Induced Creep in the Dual Cooled Lead Lithium Blanket
,”
Fusion Eng. Des.
,
201
, p.
114256
.
7.
Behnam
,
A.
,
Truster
,
T. J.
,
Tipireddy
,
R.
,
Messner
,
M. C.
, and
Gupta
,
V.
,
2022
, “
Uncertainty Quantification Framework for Predicting Material Response With Large Number of Parameters: Application to Creep Prediction in Ferritic-Martensitic Steels Using Combined Crystal Plasticity and Grain Boundary Models
,”
Integr. Mater. Manuf. Innovation
,
11
(
4
), pp.
516
531
.
8.
Chaboche
,
J.-L.
,
1989
, “
Constitutive Equations for Cyclic Plasticity and Cyclic Viscoplasticity
,”
Int. J. Plast.
,
5
(
3
), pp.
247
302
.
9.
Moosbrugger
,
J.
,
1992
, “
Nonisothermal Constitutive Model for the Small Strain Behavior of 9Cr-1 Mo-V-Nb Pressure Vessel Steel
,”
ASME J. Eng. Mater. Technol.
,
114
(
4
), pp.
354
361
.
10.
Dyson
,
B.
,
2009
, “
Microstructure Based Creep Constitutive Model for Precipitation Strengthened Alloys: Theory and Application
,”
Mater. Sci. Technol.
,
25
(
2
), pp.
213
220
.
11.
Christopher
,
J.
, and
Choudhary
,
B.
,
2019
, “
Prediction of Long-Term Creep Behaviour of Grade 91 Steel At 873 K in the Framework of Microstructure-Based Creep Damage Mechanics Approach
,”
Int. J. Damage Mech.
,
28
(
6
), pp.
877
895
.
12.
Ma
,
A.
,
Dye
,
D.
, and
Reed
,
R.
,
2008
, “
A Model for the Creep Deformation Behaviour of Single-Crystal Superalloy CMSX-4
,”
Acta Mater.
,
56
(
8
), pp.
1657
1670
.
13.
Zhao
,
J.
,
Gong
,
J.
,
Saboo
,
A.
,
Dunand
,
D. C.
, and
Olson
,
G. B.
,
2018
, “
Dislocation-Based Modeling of Long-Term Creep Behaviors of Grade 91 Steels
,”
Acta Mater.
,
149
, pp.
19
28
.
14.
Wu
,
R.
, and
Sandström
,
R.
,
1996
, “
Strain Dependence of Creep Cavity Nucleation in Low Alloy and 12% Cr Steels
,”
Mater. Sci. Technol.
,
12
(
5
), pp.
405
415
.
15.
Gaffard
,
V.
,
2004
, “
Experimental Study and Modelling of High Temperature Creep Flow and Damage Behaviour of 9Cr1Mo-NbV Steel Weldments
,”
Ecole Nationale Superieure des Mines
, pp.
1
379
. https://inis.iaea.org/records/s1gq2-jef92
16.
Gupta
,
C.
,
Toda
,
H.
,
Schlacher
,
C.
,
Adachi
,
Y.
,
Mayr
,
P.
,
Sommitsch
,
C.
,
Uesugi
,
K.
,
Suzuki
,
Y.
,
Takeuchi
,
A.
, and
Kobayashi
,
M.
,
2013
, “
Study of Creep Cavitation Behavior in Tempered Martensitic Steel Using Synchrotron Micro-tomography and Serial Sectioning Techniques
,”
Mater. Sci. Eng. A
,
564
, pp.
525
538
.
17.
Shrestha
,
T.
,
Basirat
,
M.
,
Charit
,
I.
,
Potirniche
,
G. P.
, and
Rink
,
K. K.
,
2013
, “
Creep Rupture Behavior of Grade 91 Steel
,”
Mater. Sci. Eng. A
,
565
, pp.
382
391
.
18.
Wang
,
X.
,
Wang
,
X.
,
Luo
,
B.
, and
Guo
,
J.
,
2018
, “
Analysis of Cavity Evolution in 9% Cr Heat-Resistant Steel Welded Joint During Creep
,”
Eng. Fract. Mech.
,
202
, pp.
394
404
.
19.
Westwood
,
C.
,
Pan
,
J.
, and
Crocombe
,
A.
,
2004
, “
Nucleation, Growth and Coalescence of Multiple Cavities at a Grain-Boundary
,”
Eur. J. Mech. A. Solids
,
23
(
4
), pp.
579
597
.
20.
Rice
,
J. R.
, and
Tracey
,
D. M.
,
1969
, “
On the Ductile Enlargement of Voids in Triaxial Stress Fields
,”
J. Mech. Phys. Solids
,
17
(
3
), pp.
201
217
.
21.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
,
99
(
1
), pp.
2
15
.
22.
Sham
,
T.-L.
, and
Needleman
,
A.
,
1983
, “
Effects of Triaxial Stressing on Creep Cavitation of Grain Boundaries
,”
Acta Metall.
,
31
(
6
), pp.
919
926
.
23.
Van Der Giessen
,
E.
,
Van der Burg
,
M.
,
Needleman
,
A.
, and
Tvergaard
,
V.
,
1995
, “
Void Growth Due to Creep and Grain Boundary Diffusion at High Triaxialities
,”
J. Mech. Phys. Solids
,
43
(
1
), pp.
123
165
.
24.
Nassif
,
O.
,
Truster
,
T. J.
,
Ma
,
R.
,
Cochran
,
K. B.
,
Parks
,
D. M.
,
Messner
,
M. C.
, and
Sham
,
T.
,
2019
, “
Combined Crystal Plasticity and Grain Boundary Modeling of Creep in Ferritic-Martensitic Steels: I. Theory and Implementation
,”
Modell. Simul. Mater. Sci. Eng.
,
27
(
7
), p.
075009
.
25.
Chen
,
T.
, and
Messner
,
M. C.
,
2023
, “
Training Material Models Using Gradient Descent Algorithms
,”
Int. J. Plast.
,
165
, p.
103605
.
26.
Li
,
B.
,
Lin
,
J.
, and
Yao
,
X.
,
2002
, “
A Novel Evolutionary Algorithm for Determining Unified Creep Damage Constitutive Equations
,”
Int. J. Mech. Sci.
,
44
(
5
), pp.
987
1002
.
27.
Abdul-Hameed
,
H.
,
Messager
,
T.
,
Zaïri
,
F.
, and
Naït-Abdelaziz
,
M.
,
2014
, “
Large-Strain Viscoelastic–Viscoplastic Constitutive Modeling of Semi-crystalline Polymers and Model Identification by Deterministic/Evolutionary Approach
,”
Comput. Mater. Sci.
,
90
, pp.
241
252
.
28.
Yao
,
D.
,
Duan
,
Y.-C.
,
Li
,
M.-Y.
, and
Guan
,
Y.-P.
,
2021
, “
Hybrid Identification Method of Coupled Viscoplastic-Damage Constitutive Parameters Based on BP Neural Network and Genetic Algorithm
,”
Eng. Fract. Mech.
,
257
, p.
108027
.
29.
Kronberger
,
G.
,
Kabliman
,
E.
,
Kronsteiner
,
J.
, and
Kommenda
,
M.
,
2022
, “
Extending a Physics-Based Constitutive Model Using Genetic Programming
,”
Appl. Eng. Sci.
,
9
, p.
100080
.
30.
Steglich
,
D.
,
Brocks
,
W.
,
Bohlen
,
J.
, and
Barlat
,
F.
,
2011
, “
Modelling Direction-Dependent Hardening in Magnesium Sheet Forming Simulations
,”
Int. J. Mater. Form.
,
4
(
2
), pp.
243
253
.
31.
Yan
,
S.
,
Yang
,
H.
,
Li
,
H.
, and
Yao
,
X.
,
2016
, “
A Unified Model for Coupling Constitutive Behavior and Micro-defects Evolution of Aluminum Alloys Under High-Strain-Rate Deformation
,”
Int. J. Plast.
,
85
, pp.
203
229
.
32.
Sedighiani
,
K.
,
Diehl
,
M.
,
Traka
,
K.
,
Roters
,
F.
,
Sietsma
,
J.
, and
Raabe
,
D.
,
2020
, “
An Efficient and Robust Approach to Determine Material Parameters of Crystal Plasticity Constitutive Laws From Macro-scale Stress-Strain Curves
,”
Int. J. Plast.
,
134
, p.
102779
.
33.
Savage
,
D. J.
,
Feng
,
Z.
, and
Knezevic
,
M.
,
2021
, “
Identification of Crystal Plasticity Model Parameters by Multi-objective Optimization Integrating Microstructural Evolution and Mechanical Data
,”
Comput. Methods Appl. Mech. Eng.
,
379
, p.
113747
.
34.
Nguyen
,
T.
,
Francom
,
D. C.
,
Luscher
,
D. J.
, and
Wilkerson
,
J.
,
2021
, “
Bayesian Calibration of a Physics-Based Crystal Plasticity and Damage Model
,”
J. Mech. Phys. Solids
,
149
, p.
104284
.
35.
Kuhn
,
J.
,
Spitz
,
J.
,
Sonnweber-Ribic
,
P.
,
Schneider
,
M.
, and
Böhlke
,
T.
,
2021
, “
Identifying Material Parameters in Crystal Plasticity by Bayesian Optimization
,”
Optim. Eng.
,
23
(
10
), pp.
1
35
.
36.
Tran
,
A.
, and
Lim
,
H.
,
2023
, “
An Asynchronous Parallel High-Throughput Model Calibration Framework for Crystal Plasticity Finite Element Constitutive Models
,”
Comput. Mech.
,
72
(
3
), pp.
485
498
.
37.
Kushner
,
H. J.
,
1964
, “
A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in the Presence of Noise
,”
ASME J. Basic Eng.
,
86
(
1
), pp.
97
106
.
38.
Mockus
,
J.
,
1994
, “
Application of Bayesian Approach to Numerical Methods of Global and Stochastic Optimization
,”
J. Global Optim.
,
4
(
4
), pp.
347
365
.
39.
Jones
,
D. R.
,
2001
, “
A Taxonomy of Global Optimization Methods Based on Response Surfaces
,”
J. Global Optim.
,
21
(
4
), pp.
345
383
.
40.
Frazier
,
P. I.
,
2018
, “
A Tutorial on Bayesian Optimization
,”
INFORMS TutORials in Operations Research
, pp.
255
278
.
41.
Huang
,
C.
,
Ren
,
Y.
,
McGuinness
,
E. K.
,
Losego
,
M. D.
,
Lively
,
R. P.
, and
Joseph
,
V. R.
,
2021
, “
Bayesian Optimization of Functional Output in Inverse Problems
,”
Optim. Eng.
,
22
, pp.
2553
2574
.
42.
Uhrenholt
,
A. K.
, and
Jensen
,
B. S.
,
2019
, “
Efficient Bayesian Optimization for Target Vector Estimation
,”
The 22nd International Conference on Artificial Intelligence and Statistics
,
Naha, Okinawa, Japan
,
Apr. 16–18
. https://proceedings.mlr.press/v89/uhrenholt19a.html.
43.
Matsui
,
K.
,
Kusakawa
,
S.
,
Ando
,
K.
,
Kutsukake
,
K.
,
Ujihara
,
T.
, and
Takeuchi
,
I.
,
2019
, “
Bayesian Active Learning for Structured Output Design
,”
ArXiv
.
44.
Giudicelli
,
G.
,
Lindsay
,
A.
,
Harbour
,
L.
,
Icenhour
,
C.
,
Li
,
M.
,
Hansel
,
J. E.
,
German
,
P.
, et al.,
2024
, “
3.0-MOOSE: Enabling Massively Parallel Multiphysics Simulations
,”
SoftwareX
,
26
, p.
101690
.
45.
Rovinelli
,
A.
,
Messner
,
M. C.
,
Parks
,
D. M.
, and
Sham
,
T.-L.
,
2021
, “
Accurate Effective Stress Measures: Predicting Creep Life for 3D Stresses Using 2D and 1D Creep Rupture Simulations and Data
,”
Integr. Mater. Manuf. Innovation
,
10
(
4
), pp.
627
643
.
46.
Abe
,
F.
,
Noda
,
T.
,
Araki
,
H.
, and
Nakazawa
,
S.
,
1991
, “
Alloy Composition Selection for Improving Strength and Toughness of Reduced Activation 9Cr-W Steels
,”
J. Nucl. Mater.
,
179
, pp.
663
666
.
47.
Shankar
,
V.
,
Mariappan
,
K.
,
Sandhya
,
R.
,
Laha
,
K.
,
Jayakumar
,
T.
, and
Kumar
,
E. R.
,
2015
, “
Effect of W and Ta on Creep–Fatigue Interaction Behavior of Reduced Activation Ferritic–Martensitic (RAFM) Steels
,”
Fusion Eng. Des.
,
100
, pp.
314
320
.
48.
Schaefer
,
L.
, and
Schirra
,
M.
,
1999
, “
Influence of Thermal Aging on Tensile and Impact Bending Properties of the Steel Grades OPTIFER and F82H Mod
,”
J. Nucl. Mater.
,
271
, pp.
455
458
.
49.
Hasegawa
,
T.
,
Tomita
,
Y.
, and
Kohyama
,
A.
,
1998
, “
Influence of Tantalum and Nitrogen Contents, Normalizing Condition and TMCP Process on the Mechanical Properties of Low-Activation 9Cr–2W–0.2 V–Ta Steels for Fusion Application
,”
J. Nucl. Mater.
,
258
, pp.
1153
1157
.
50.
Shiba
,
K.
,
Hishinuma
,
A.
,
Tohyama
,
A.
, and
Masamura
,
K.
,
1997
, “
Properties of Low Activation Ferritic Steel F82H IEA Heat. Interim Report of IEA Round-Robin Tests. 1
,” Japan Atomic Energy Research Inst., Tokyo, Japan. https://inis.iaea.org/records/t8f08-6e989
51.
Tan
,
L.
,
Snead
,
L. L.
, and
Katoh
,
Y.
,
2016
, “
Development of New Generation Reduced Activation Ferritic-martensitic Steels for Advanced Fusion Reactors
,”
J. Nucl. Mater.
,
478
, pp.
42
49
.
52.
Gieseke
,
B.
,
Brinkman
,
C.
, and
Maziasz
,
P.
,
1992
, “The Influence of Thermal Aging on the Microstructure and Fatigue Properties of Modified 9Cr-1Mo Steel,”
Oak Ridge National Lab
,
TN
.
53.
Cerri
,
E.
,
Evangelista
,
E.
,
Spigarelli
,
S.
, and
Bianchi
,
P.
,
1998
, “
Evolution of Microstructure in a Modified 9Cr–1Mo Steel During Short Term Creep
,”
Mater. Sci. Eng. A
,
245
(
2
), pp.
285
292
.
54.
Shrestha
,
T.
,
Basirat
,
M.
,
Charit
,
I.
,
Potirniche
,
G. P.
,
Rink
,
K. K.
, and
Sahaym
,
U.
,
2012
, “
Creep Deformation Mechanisms in Modified 9Cr–1Mo Steel
,”
J. Nucl. Mater.
,
423
(
1–3
), pp.
110
119
.
55.
Dimmler
,
G.
,
Weinert
,
P.
,
Kozeschnik
,
E.
, and
Cerjak
,
H.
,
2003
, “
Quantification of the Laves Phase in Advanced 9–12% Cr Steels Using a Standard SEM
,”
Mater. Charact.
,
51
(
5
), pp.
341
352
.
56.
Rojas
,
D.
,
Garcia
,
J.
,
Prat
,
O.
,
Sauthoff
,
G.
, and
Kaysser-Pyzalla
,
A.
,
2011
, “
9% Cr Heat Resistant Steels: Alloy Design, Microstructure Evolution and Creep Response at 650C
,”
Mater. Sci. Eng.: A
,
528
(
15
), pp.
5164
5176
.
57.
Liu
,
Z.
,
Huo
,
X.
,
Yu
,
Y.
,
Zhang
,
C.
,
Xiao
,
N.
,
Zhao
,
J.
, and
Yang
,
Z.
,
2021
, “
Influence of Austenitizing Temperature on the Mechanical Properties and Microstructure of Reduced Activation Ferritic/Martensitic Steel
,”
Mater. Sci. Eng.: A
,
826
, p.
141934
.
58.
Ravikirana
,
M.
,
Saroja
,
S.
,
Jayakumar
,
T.
, and
Rajendrakumar
,
E.
,
2013
, “
Influence of W and Ta Content on Microstructural Characteristics in Heat Treated 9Cr-Reduced Activation Ferritic/Martensitic Steels
,”
Mater. Charact.
,
84
, pp.
196
204
.
59.
Huang
,
Q.
,
Baluc
,
N.
,
Dai
,
Y.
,
Jitsukawa
,
S.
,
Kimura
,
A.
,
Konys
,
J.
,
Kurtz
,
R.
, et al.,
2013
, “
Recent Progress of R&D Activities on Reduced Activation Ferritic/Martensitic Steels
,”
J. Nucl. Mater.
,
442
(
1
, Supplement 1), pp.
S2
S8
, Fifteenth International Conference on Fusion Reactor Materials.
60.
Laliberte
,
F.
,
Li
,
M.
,
Almer
,
J.
, and
Liu
,
L.
,
2018
, “
In-situ Synchrotron X-Ray Study of Microstructural Evolution During Creep Deformation in Grade 91 Steel
,”
Mater. Sci. Eng.: A
,
737
, pp.
115
123
.
61.
Herring
,
C.
,
1950
, “
Diffusional Viscosity of a Polycrystalline Solid
,”
J. Appl. Phys.
,
21
(
5
), pp.
437
445
.
62.
Coble
,
R.
,
1963
, “
A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials
,”
J. Appl. Phys.
,
34
(
6
), pp.
1679
1682
.
63.
Kloc
,
L.
, and
Sklenička
,
V.
,
1997
, “
Transition From Power-Law to Viscous Creep Behaviour of P-91 Type Heat-Resistant Steel
,”
Mater. Sci. Eng.: A
,
234
, pp.
962
965
.
64.
Haney
,
E. M.
,
Dalle
,
F.
,
Sauzay
,
M.
,
Vincent
,
L.
,
Tournié
,
I.
,
Allais
,
L.
, and
Fournier
,
B.
,
2009
, “
Macroscopic Results of Long-Term Creep on a Modified 9Cr–1Mo Steel (T91)
,”
Mater. Sci. Eng.: A
,
510
, pp.
99
103
.
65.
Kimura
,
K.
,
Sawada
,
K.
, and
Kushima
,
H.
,
2014
, “
Creep Deformation Analysis of Grade 91 Steels and Prediction of Creep Strength Properties
,”
ASME 2014 Pressure Vessels and Piping Conference
,
Anaheim, CA
,
July 20–24
.
66.
Argon
,
A.
,
1983
, “Mechanisms and Mechanics of Fracture in Creeping Alloys,”
Recent Advances in Creep and Fatigue of Engineering Materials and Structures
,
B.
Wilshire
and
D. R. J.
Owen
, eds.,
Pineridge Press
,
Swansea, UK
, pp.
1
52
.
67.
Dyson
,
B.
,
1983
, “
Continuous Cavity Nucleation and Creep Fracture
,”
Scr. Metall.
,
17
(
1
), pp.
31
37
.
68.
Panait
,
C. G.
,
Zielińska-Lipiec
,
A.
,
Koziel
,
T.
,
Czyrska-Filemonowicz
,
A.
,
Gourgues-Lorenzon
,
A.-F.
, and
Bendick
,
W.
,
2010
, “
Evolution of Dislocation Density, Size of Subgrains and MX-Type Precipitates in a P91 Steel During Creep and During Thermal Ageing at 600C for More Than 100,000 h
,”
Mater. Sci. Eng.: A
,
527
(
16
), pp.
4062
4069
.
69.
Sket
,
F.
,
Dzieciol
,
K.
,
Borbély
,
A.
,
Kaysser-Pyzalla
,
A. R.
,
Maile
,
K.
, and
Scheck
,
R.
,
2010
, “
Microtomographic Investigation of Damage in E911 Steel After Long Term Creep
,”
Mater. Sci. Eng.: A
,
528
(
1
), pp.
103
111
.
70.
Choudhary
,
B.
, and
Samuel
,
E. I.
,
2011
, “
Creep Behaviour of Modified 9Cr–1Mo Ferritic Steel
,”
J. Nucl. Mater.
,
412
(
1
), pp.
82
89
.
71.
Rovinelli
,
A.
,
Messner
,
M.
, and
Sham
,
T.-L.
,
2020
,
Initial Microstructural Model for Creep-Fatigue Damage in Grade 91 Steel
,
Argonne National Lab.(ANL)
,
Argonne, IL
.
72.
Pérez-Foguet
,
A.
,
Rodríguez-Ferran
,
A.
, and
Huerta
,
A.
,
2001
, “
Consistent Tangent Matrices for Substepping Schemes
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
35–36
), pp.
4627
4647
.
73.
Quey
,
R.
,
Dawson
,
P. R.
, and
Barbe
,
F.
,
2011
, “
Large-Scale 3D Random Polycrystals for the Finite Element Method: Generation, Meshing and Remeshing
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
17–20
), pp.
1729
1745
.
74.
Nguyen
,
V. P.
,
2014
, “
An Open Source Program to Generate Zero-Thickness Cohesive Interface Elements
,”
Adv. Eng. Software
,
74
, pp.
27
39
.
75.
Messner
,
M.
,
Truster
,
T.
,
Cochran
,
K.
,
Parks
,
D.
, and
Sham
,
T.-L.
,
2017
, “Fy17 Status Report on the Micromechanical Finite Element Modeling of Creep Fracture of Grade 91 Steel,”
Argonne National Lab.(ANL)
,
Argonne, IL
, Report No. ANL-ART-95.
76.
Sakane
,
M.
, and
Hosokawa
,
T.
,
2001
, “
Biaxial and Triaxial Creep Testing of Type 304 Stainless Steel At 923 K
,” IUTAM Symposium on Creep in Structures: Proceedings of the IUTAM Symposium, Nagoya, Japan, Apr. 3–7,
Springer
, pp.
411
418
.
77.
Messner
,
M. C.
,
Nassif
,
O.
,
Ma
,
R.
,
Truster
,
T. J.
,
Cochran
,
K.
,
Parks
,
D.
, and
Sham
,
T.
,
2019
, “
Combined Crystal Plasticity and Grain Boundary Modeling of Creep in Ferritic-Martensitic Steels: II, The Effect of Stress and Temperature on Engineering and Microstructural Properties
,”
Modell. Simul. Mater. Sci. Eng.
,
27
(
7
), p.
075010
.
78.
Tuo
,
R.
, and
Wu
,
C. F. J.
,
2015
, “
Efficient Calibration for Imperfect Computer Models
,”
Ann. Stat.
,
43
(
6
), pp.
2331
2352
.
79.
Hyman
,
J. M.
,
1983
, “
Accurate Monotonicity Preserving Cubic Interpolation
,”
SIAM J. Sci. Stat. Comput.
,
4
(
4
), pp.
645
654
.
80.
Eubank
,
R. L.
,
1988
,
Spline Smoothing and Nonparametric Regression
,
Marcel Dekker
,
New York, New York, USA
.
81.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.
82.
Santner
,
T. J.
,
Williams
,
B. J.
,
Notz
,
W. I.
, and
Williams
,
B. J.
,
2003
,
The Design and Analysis of Computer Experiments
, Vol.
1
,
Springer
,
New York, New York, USA
. https://link.springer.com/book/10.1007/978-1-4757-3799-8
83.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Processes for Machine Learning
, Vol.
1
,
The MIT Press
,
Cambridge, Massachusetts, USA
.
84.
Joseph
,
V. R.
,
Gul
,
E.
, and
Ba
,
S.
,
2015
, “
Maximum Projection Designs for Computer Experiments
,”
Biometrika
,
102
(
2
), pp.
371
380
.
85.
Joseph
,
V. R.
,
Gul
,
E.
, and
Ba
,
S.
,
2020
, “
Designing Computer Experiments With Multiple Types of Factors: The MaxPro Approach
,”
J. Qual. Technol.
,
52
(
4
), pp.
343
354
.
86.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.
87.
Johnson
,
M. E.
,
Moore
,
L. M.
, and
Ylvisaker
,
D.
,
1990
, “
Minimax and Maximin Distance Designs
,”
J. Stat. Plann. Inference
,
26
(
2
), pp.
131
148
.
88.
Bonilla
,
E. V.
,
Chai
,
K.
, and
Williams
,
C.
,
2007
, “
Multi-task Gaussian Process Prediction
,”
Adv. Neural Inf. Process. Syst.
,
20
, pp.
153
160
. https://papers.nips.cc/paper_files/paper/2007/hash/66368270ffd51418ec58bd793f2d9b1b-Abstract.html
89.
Alvarez
,
M. A.
,
Rosasco
,
L.
, and
Lawrence
,
N. D.
,
2012
, “
Kernels for Vector-Valued Functions: A Review
,”
Found. Trends Mach. Learn.
,
4
(
3
), pp.
195
266
.
90.
Ramsay
,
J.
, and
Silverman
,
B.
,
2006
,
Functional Data Analysis
(
Springer Series in Statistics
),
Springer
,
New York
.
91.
Jolliffe
,
I. T.
, and
Cadima
,
J.
,
2016
, “
Principal Component Analysis: A Review and Recent Developments
,”
Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci.
,
374
(
2065
), p.
20150202
.
92.
Golub
,
G. H.
, and
Welsch
,
J. H.
,
1969
, “
Calculation of Gauss Quadrature Rules
,”
Math. Comput.
,
23
(
106
), pp.
221
230
.
93.
Basudhar
,
A.
,
Dribusch
,
C.
,
Lacaze
,
S.
, and
Missoum
,
S.
,
2012
, “
Constrained Efficient Global Optimization With Support Vector Machines
,”
Struct. Multidiscipl. Optim.
,
46
(
2
), pp.
201
221
.
94.
Hickman
,
R. J.
,
Aldeghi
,
M.
,
Häse
,
F.
, and
Aspuru-Guzik
,
A.
,
2022
, “
Bayesian Optimization With Known Experimental and Design Constraints for Chemistry Applications
,”
Digital Discovery
,
1
(
5
), pp.
732
744
.
95.
Gelbart
,
M. A.
,
Snoek
,
J.
, and
Adams
,
R. P.
,
2014
, “
Bayesian optimization with unknown constraints
,”
UAI'14: Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence
,
Quebec City, Quebec, Canada
,
July 23–27
.
96.
Ginsbourger
,
D.
,
Le Riche
,
R.
, and
Carraro
,
L.
,
2010
, “Kriging is Well-Suited toParallelize Optimization,”
Computational Intelligence in Expensive Optimization Problems
,
Y.
Tenne
and
C.-K.
Goh
eds.,
Springer
,
New York
, pp.
131
162
.
97.
Loeppky
,
J. L.
,
Sacks
,
J.
, and
Welch
,
W. J.
,
2009
, “
Choosing the Sample Size of a Computer Experiment: A Practical Guide
,”
Technometrics
,
51
(
4
), pp.
366
376
.
98.
Ba
,
S.
, and
Joseph
,
V. R.
,
2018
, “MaxPro: Maximum Projection Designs, R Package Version 4.1-2,”. https://CRAN.R-project.org/package=MaxPro, Accessed December 6, 2022.
99.
Ramsay
,
J. O.
,
Graves
,
S.
, and
Hooker
,
G.
,
2020
, “fda: Functional Data Analysis, R Package Version 5.1.9,”. https://CRAN.R-project.org/package=fda, Accessed December 6, 2022.
100.
Dancik
,
G. M.
, and
Dorman
,
K. S.
,
2008
, “
mlegp: Statistical Analysis for Computer Models of Biological Systems Using R
,”
Bioinformatics
,
24
(
17
), pp.
1966
1967
.
101.
Kennedy
,
M. C.
, and
O’Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
,
63
(
3
), pp.
425
464
.
102.
Nguyen
,
T.
,
Luscher
,
D. J.
, and
Wilkerson
,
J. W.
,
2017
, “
A Dislocation-Based Crystal Plasticity Framework for Dynamic Ductile Failure of Single Crystals
,”
J. Mech. Phys. Solids
,
108
, pp.
1
29
.
103.
Venkataraman
,
A.
, and
Messner
,
M.
,
2021
, “An Initial Framework for the Rapid Qualification of Long-Term Creep Rupture Strength via Microstructural Modeling,”
Argonne National Lab (ANL)
,
Argonne, IL
, Report No. ANL-21/34.
104.
Generale
,
A. P.
,
Hall
,
R. B.
,
Brockman
,
R. A.
,
Joseph
,
V. R.
,
Jefferson
,
G.
,
Zawada
,
L.
,
Pierce
,
J.
, and
Kalidindi
,
S. R.
,
2022
, “
Bayesian Calibration of Continuum Damage Model Parameters for an Oxide-Oxide Ceramic Matrix Composite Using Inhomogeneous Experimental Data
,”
Mech. Mater.
,
175
, p.
104487
.
105.
Higdon
,
D.
,
Gattiker
,
J.
,
Williams
,
B.
, and
Rightley
,
M.
,
2008
, “
Computer Model Calibration Using High-Dimensional Output
,”
J. Am. Stat. Assoc.
,
103
(
482
), pp.
570
583
.
106.
Sürer
,
Ö.
,
Plumlee
,
M.
, and
Wild
,
S. M.
,
2024
, “
Sequential Bayesian Experimental Design for Calibration of Expensive Simulation Models
,”
Technometrics
,
66
(
2
), pp.
157
171
.
107.
Joseph
,
V. R.
, and
Melkote
,
S. N.
,
2009
, “
Statistical Adjustments to Engineering Models
,”
J. Qual. Technol.
,
41
(
4
), pp.
362
375
.
108.
Versino
,
D.
,
Tonda
,
A.
, and
Bronkhorst
,
C. A.
,
2017
, “
Data Driven Modeling of Plastic Deformation
,”
Comput. Methods Appl. Mech. Eng.
,
318
, pp.
981
1004
.
109.
Leyda
,
W. E.
, and
Rowe
,
J. P.
,
1969
, “A Study of the Time for Departure from Secondary Creep of Eighteen Steels,”
American Society for Metals
,
Russell, OH
, Technical Report No. P 9-6.1.
110.
Raj
,
R.
, and
Ashby
,
M.
,
1971
, “
On Grain Boundary Sliding and Diffusional Creep
,”
Metall. Trans.
,
2
(
4
), pp.
1113
1127
.
You do not currently have access to this content.