Abstract

Cyber-enabled manufacturing systems are becoming increasingly data-rich, generating vast amounts of real-time sensor data for quality control and process optimization. However, this proliferation of data also exposes these systems to significant cyber-physical security threats. For instance, malicious attackers may delete, change, or replace original data, leading to defective products, damaged equipment, or operational safety hazards. False data injection attacks can compromise machine learning models, resulting in erroneous predictions and decisions. To mitigate these risks, it is crucial to employ robust data processing techniques that can adapt to varying process conditions and detect anomalies in real-time. In this context, the incremental machine learning (IML) approaches can be valuable, allowing models to be updated incrementally with newly collected data without retraining from scratch. Moreover, although recent studies have demonstrated the potential of blockchain in enhancing data security within manufacturing systems, most existing security frameworks are primarily based on cryptography, which does not sufficiently address data quality issues. Thus, this study proposes a gatekeeper mechanism to integrate IML with blockchain and discusses how this integration could potentially increase the data integrity of cyber-enabled manufacturing systems. The proposed IML-integrated blockchain can address the data security concerns from both intentional alterations (e.g., malicious tampering) and unintentional alterations (e.g., process anomalies and outliers). The real-world case study results show that the proposed gatekeeper integration algorithm can successfully filter out over 80% of malicious data entries while maintaining comparable classification performance to standard IML models. Furthermore, the integration of blockchain enables effective detection of tampering attempts, ensuring the trustworthiness of the stored information.

References

1.
Anagnostopoulos
,
I.
,
Zeadally
,
S.
, and
Exposito
,
E.
,
2016
, “
Handling Big Data: Research Challenges and Future Directions
,”
J. Supercomput.
,
72
(
4
), pp.
1494
1516
.
2.
Dogan
,
A.
, and
Birant
,
D.
,
2021
, “
Machine Learning and Data Mining in Manufacturing
,”
Expert Syst. Appl.
,
166
(
4
), p.
114060
.
3.
Wang
,
C.
,
Tan
,
X. P.
,
Tor
,
S. B.
, and
Lim
,
C. S.
,
2020
, “
Machine Learning in Additive Manufacturing: State-of-the-Art and Perspectives
,”
Addit. Manuf.
,
36
(
6
), p.
101538
.
4.
Rai
,
R.
,
Tiwari
,
M. K.
,
Ivanov
,
D.
, and
Dolgui
,
A.
,
2021
, “
Machine Learning in Manufacturing and Industry 4.0 Applications
,”
Int. J. Prod. Res.
,
59
(
16
), pp.
4773
4778
.
5.
Sänger
,
J.
,
Richthammer
,
C.
,
Hassan
,
S.
, and
Pernul
,
G.
,
2014
, “
Trust and Big Data: A Roadmap for Research
,”
2014 25th International Workshop on Database and Expert Systems Applications
,
Munich, Germany
,
Sept. 1–4
, pp.
278
282
.
6.
Rahman
,
M. H.
,
Wuest
,
T.
, and
Shafae
,
M.
,
2023
, “
Manufacturing Cybersecurity Threat Attributes and Countermeasures: Review, Meta-Taxonomy, and Use Cases of Cyberattack Taxonomies
,”
J. Manuf. Syst.
,
68
(
3
), pp.
196
208
.
7.
2023
, IBM Security X-Force Threat Intelligence Index 2023. Available: https://www.ibm.com/reports/threat-intelligence, Accessed July 11, 2023.
8.
2022
, ICS/OT Cybersecurity Year in Review Report | Dragos. Available: https://hub.dragos.com/ics-cybersecurity-year-in-review-2022, Accessed July 11, 2023.
9.
Aboelwafa
,
M. M. N.
,
Seddik
,
K. G.
,
Eldefrawy
,
M. H.
,
Gadallah
,
Y.
, and
Gidlund
,
M.
,
2020
, “
A Machine-Learning-Based Technique for False Data Injection Attacks Detection in Industrial IoT
,”
IEEE Internet Things J.
,
7
(
9
), pp.
8462
8471
.
10.
Ahmed
,
M.
, and
Pathan
,
A.-S. K.
,
2020
, “
False Data Injection Attack (FDIA): An Overview and New Metrics for Fair Evaluation of Its Countermeasure
,”
Complex Adapt. Syst. Model.
,
8
(
1
), p.
4
.
11.
Zhaofeng
,
M.
,
Xiaochang
,
W.
,
Jain
,
D. K.
,
Khan
,
H.
,
Hongmin
,
G.
, and
Zhen
,
W.
,
2020
, “
A Blockchain-Based Trusted Data Management Scheme in Edge Computing
,”
IEEE Trans. Ind. Inf.
,
16
(
3
), pp.
2013
2021
.
12.
Aste
,
T.
,
Tasca
,
P.
, and
Di Matteo
,
T.
,
2017
, “
Blockchain Technologies: The Foreseeable Impact on Society and Industry
,”
Computer
,
50
(
9
), pp.
18
28
.
13.
Zhou
,
Q.
,
Huang
,
H.
,
Zheng
,
Z.
, and
Bian
,
J.
,
2020
, “
Solutions to Scalability of Blockchain: A Survey
,”
IEEE Access
,
8
(
1
), pp.
16440
16455
.
14.
Wan
,
H.
,
Li
,
K.
, and
Huang
,
Y.
,
2022
, “
Blockchain: A Review From the Perspective of Operations Researchers
,”
2022 Winter Simulation Conference (WSC)
,
Singapore
,
Dec. 11–14
, pp.
283
297
.
15.
Shi
,
Z.
,
Oskolkov
,
B.
,
Tian
,
W.
,
Kan
,
C.
, and
Liu
,
C.
,
2024
, “
Sensor Data Protection Through Integration of Blockchain and Camouflaged Encryption in Cyber-Physical Manufacturing Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
7
), p.
071004
.
16.
Kizza
,
J. M.
,
2020
, “Blockchains, Cryptocurrency, and Smart Contracts Technology: Security Considerations,”
Guide to Computer Network Security
,
J. M.
Kizza
, ed.,
Springer International Publishing
,
Cham, Switzerland
, pp.
533
558
.
17.
Al-Jaroodi
,
J.
, and
Mohamed
,
N.
,
2019
, “
Blockchain in Industries: A Survey
,”
IEEE Access
,
7
(
1
), pp.
36500
36515
.
18.
French
,
R. M.
,
1999
, “
Catastrophic Forgetting in Connectionist Networks
,”
Trends Cogn. Sci.
,
3
(
4
), pp.
128
135
.
19.
Casado
,
F. E.
,
Lema
,
D.
,
Criado
,
M. F.
,
Iglesias
,
R.
,
Regueiro
,
C. V.
, and
Barro
,
S.
,
2022
, “
Concept Drift Detection and Adaptation for Federated and Continual Learning
,”
Multimed. Tools Appl.
,
81
(
3
), pp.
3397
3419
.
20.
Robins
,
A.
,
1995
, “
Catastrophic Forgetting, Rehearsal and Pseudorehearsal
,”
Connection Sci.
,
7
(
2
), pp.
123
146
.
21.
De Lange
,
M.
,
Aljundi
,
R.
,
Masana
,
M.
,
Parisot
,
S.
,
Jia
,
X.
,
Leonardis
,
A.
,
Slabaugh
,
G.
, and
Tuytelaars
,
T.
,
2022
, “
A Continual Learning Survey: Defying Forgetting in Classification Tasks
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
44
(
7
), pp.
3366
3385
.
22.
Protocol Labs
,
2017
, Filecoin: A Decentralized Storage Network. Available: https://filecoin.io/filecoin.pdf, Accessed February 26, 2024.
23.
Williams
,
S.
,
Diordiiev
,
V.
, and
Berman
,
L.
“Arweave: A Protocol for Economically Sustainable Information Permanence”.
24.
Yaga
,
D.
,
Mell
,
P.
,
Roby
,
N.
, and
Scarfone
,
K.
,
2018
,
Blockchain Technology Overview
,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
25.
Ashraf
,
M.
, and
Heavey
,
C.
,
2023
, “
A Prototype of Supply Chain Traceability Using Solana as Blockchain and IoT
,”
Proc. Comput. Sci.
,
217
(
2
), pp.
948
959
.
26.
Abeyratne
,
S.
, and
Monfared
,
R.
,
2016
, “
Blockchain Ready Manufacturing Supply Chain Using Distributed Ledger
,”
Int. J. Res. Eng. Technol.
,
5
(
9
), pp.
1
10
.
27.
Ko
,
T.
,
Lee
,
J.
, and
Ryu
,
D.
,
2018
, “
Blockchain Technology and Manufacturing Industry: Real-Time Transparency and Cost Savings
,”
Sustainability
,
10
(
11
), p.
4274
.
28.
Vatankhah Barenji
,
A.
,
Li
,
Z.
,
Wang
,
W. M.
,
Huang
,
G. Q.
, and
Guerra-Zubiaga
,
D. A.
,
2020
, “
Blockchain-Based Ubiquitous Manufacturing: A Secure and Reliable Cyber-Physical System
,”
Int. J. Prod. Res.
,
58
(
7
), pp.
2200
2221
.
29.
Liu
,
J.
,
Jiang
,
P.
, and
Leng
,
J.
,
2017
, “
A Framework of Credit Assurance Mechanism for Manufacturing Services Under Social Manufacturing Context
,”
2017 13th IEEE Conference on Automation Science and Engineering (CASE)
,
Xi'an, China
,
Aug. 20–23
, pp.
36
40
.
30.
Shi
,
Z.
,
Kan
,
C.
,
Tian
,
W.
, and
Liu
,
C.
,
2021
, “
A Blockchain-Based G-Code Protection Approach for Cyber-Physical Security in Additive Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
4
), p.
041007
.
31.
Holland
,
M.
,
Nigischer
,
C.
, and
Stjepandić
,
J.
,
2017
, “Copyright Protection in Additive Manufacturing With Blockchain Approach,”
Transdisciplinary Engineering: A Paradigm Shift
,
C.-H.
Chen
,
A. C.
Trappey
,
M.
Peruzzini
,
J.
Stjepandić
, and
N.
Wognum
, eds.,
IOS Press
,
Amsterdam, Netherlands
, pp.
914
921
.
32.
Hewa
,
T.
,
Braeken
,
A.
,
Liyanage
,
M.
, and
Ylianttila
,
M.
,
2022
, “
Fog Computing and Blockchain-Based Security Service Architecture for 5G Industrial IoT-Enabled Cloud Manufacturing
,”
IEEE Trans. Ind. Inf.
,
18
(
10
), pp.
7174
7185
.
33.
Liu
,
C. H.
,
Lin
,
Q.
, and
Wen
,
S.
,
2019
, “
Blockchain-Enabled Data Collection and Sharing for Industrial IoT With Deep Reinforcement Learning
,”
IEEE Trans. Ind. Inf.
,
15
(
6
), pp.
3516
3526
.
34.
“Oracle Blockchain Table,” Oracle Help Center. Available: https://docs.oracle.com/en/database/oracle/oracle-database/19/newft/oracle-blockchain-table.html. Accessed July, 5, 2023.
35.
Chu
,
Y.
, and
You
,
F.
,
2015
, “
Model-Based Integration of Control and Operations: Overview, Challenges, Advances, and Opportunities
,”
Comput. Chem. Eng.
,
83
(
12
), pp.
2
20
.
36.
Jourdan
,
N.
,
Sen
,
S.
,
Husom
,
E. J.
,
Garcia-Ceja
,
E.
,
Biegel
,
T.
, and
Metternich
,
J.
,
2021
, “On the Reliability of Machine Learning Applications in Manufacturing Environments.”
37.
Gomes
,
H. M.
,
Read
,
J.
,
Bifet
,
A.
,
Barddal
,
J. P.
, and
Gama
,
J.
,
2019
, “
Machine Learning for Streaming Data: State of the Art, Challenges, and Opportunities
,”
SIGKDD Explor. Newsl.
,
21
(
2
), pp.
6
22
.
38.
Van de Ven
,
G. M.
,
Tuytelaars
,
T.
, and
Tolias
,
A. S.
,
2022
, “
Three Types of Incremental Learning
,”
Nat. Mach. Intell.
,
4
(
12
), pp.
1185
1197
.
39.
He
,
Q. P.
, and
Wang
,
J.
,
2007
, “
Fault Detection Using the K-Nearest Neighbor Rule for Semiconductor Manufacturing Processes
,”
IEEE Trans. Semicond. Manuf.
,
20
(
4
), pp.
345
354
.
40.
Li
,
Y.
,
Polden
,
J.
,
Pan
,
Z.
,
Cui
,
J.
,
Xia
,
C.
,
He
,
F.
,
Mu
,
H.
,
Li
,
H.
, and
Wang
,
L.
,
2022
, “
A Defect Detection System for Wire Arc Additive Manufacturing Using Incremental Learning
,”
J. Ind. Inf. Integr.
,
27
(
3
), p.
100291
.
41.
Wang
,
J.
, and
Zhao
,
C.
,
2020
, “
Mode-Cloud Data Analytics Based Transfer Learning for Soft Sensor of Manufacturing Industry With Incremental Learning Ability
,”
Control Eng. Pract.
,
98
(
5
), p.
104392
.
42.
Shi
,
Z.
,
Li
,
Y.
, and
Liu
,
C.
,
2022
, “
Knowledge Distillation-Enabled Multi-stage Incremental Learning for Online Process Monitoring in Advanced Manufacturing
,”
2022 IEEE International Conference on Data Mining Workshops (ICDMW)
,
Orlando, FL
,
Nov. 28–Dec. 1
, pp.
860
867
.
43.
Shi
,
Z.
,
Mamun
,
A. A.
,
Kan
,
C.
,
Tian
,
W.
, and
Liu
,
C.
,
2023
, “
An LSTM-Autoencoder Based Online Side Channel Monitoring Approach for Cyber-Physical Attack Detection in Additive Manufacturing
,”
J. Intell. Manuf.
,
34
(
4
), pp.
1815
1831
.
44.
Mamun
,
A. A.
,
Liu
,
C.
,
Kan
,
C.
, and
Tian
,
W.
,
2022
, “
Securing Cyber-Physical Additive Manufacturing Systems by In-Situ Process Authentication Using Streamline Video Analysis
,”
J. Manuf. Syst.
,
62
(
1
), pp.
429
440
.
45.
Meng
,
L.
,
McWilliams
,
B.
,
Jarosinski
,
W.
,
Park
,
H.-Y.
,
Jung
,
Y.-G.
,
Lee
,
J.
, and
Zhang
,
J.
,
2020
, “
Machine Learning in Additive Manufacturing: A Review
,”
JOM
,
72
(
6
), pp.
2363
2377
.
46.
Yang
,
J.
,
Li
,
S.
,
Wang
,
Z.
,
Dong
,
H.
,
Wang
,
J.
, and
Tang
,
S.
,
2020
, “
Using Deep Learning to Detect Defects in Manufacturing: A Comprehensive Survey and Current Challenges
,”
Materials
,
13
(
24
), p.
5755
.
47.
Makrakis
,
G. M.
,
Kolias
,
C.
,
Kambourakis
,
G.
,
Rieger
,
C.
, and
Benjamin
,
J.
,
2021
, “
Industrial and Critical Infrastructure Security: Technical Analysis of Real-Life Security Incidents
,”
IEEE Access
,
9
(
1
), pp.
165295
165325
.
48.
McLaughlin
,
S.
,
Konstantinou
,
C.
,
Wang
,
X.
,
Davi
,
L.
,
Sadeghi
,
A.-R.
,
Maniatakos
,
M.
, and
Karri
,
R.
,
2016
, “
The Cybersecurity Landscape in Industrial Control Systems
,”
Proc. IEEE
,
104
(
5
), pp.
1039
1057
.
49.
Lilly
,
G. M.
,
2004
, “Device for and Method of One-Way Cryptographic Hashing,” (US79943201A·2001-03-05).
50.
Mrabet
,
H.
,
Alhomoud
,
A.
,
Jemai
,
A.
, and
Trentesaux
,
D.
,
2022
, “
A Secured Industrial Internet-of-Things Architecture Based on Blockchain Technology and Machine Learning for Sensor Access Control Systems in Smart Manufacturing
,”
Appl. Sci.
,
12
(
9
), p.
4641
.
51.
Gaiardelli
,
S.
,
Spellini
,
S.
,
Pasqua
,
M.
,
Ceccato
,
M.
, and
Fummi
,
F.
,
2022
, “
Integrating Smart Contracts in Manufacturing for Automated Assessment of Production Quality
,”
IECON 2022—48th Annual Conference of the IEEE Industrial Electronics Society
,
Brussels, Belgium
,
Oct. 17–20
, pp.
1
6
.
52.
Dai
,
H.-N.
,
Zheng
,
Z.
, and
Zhang
,
Y.
,
2019
, “
Blockchain for Internet of Things: A Survey
,”
IEEE Internet Things J.
,
6
(
5
), pp.
8076
8094
.
53.
Gai
,
K.
,
Wu
,
Y.
,
Zhu
,
L.
,
Zhang
,
Z.
, and
Qiu
,
M.
,
2020
, “
Differential Privacy-Based Blockchain for Industrial Internet-of-Things
,”
IEEE Trans. Ind. Inf.
,
16
(
6
), pp.
4156
4165
.
54.
Hassan
,
M. U.
,
Rehmani
,
M. H.
, and
Chen
,
J.
,
2020
, “Differential Privacy in Blockchain Technology: A Futuristic Approach.” Available: http://arxiv.org/abs/1910.04316, Accessed April 10, 2024.
You do not currently have access to this content.