We study the control design problem for uncertain nonlinear systems. A new matching condition is presented. The main idea is to explore the route through which the (worst case) uncertainty may affect the stability. This route is then used to establish the new matching condition. Compared with the previous case, the current matching condition prescribes the route nonlinearly while the early matching condition is a special case of the linear description. A class of robust controls, which guarantees practical stability, can be designed based on this new matching condition. The size of the uniform ultimate boundedness ball can be made arbitrarily small by an appropriate choice of a design parameter.
Issue Section:
Technical Papers
1.
Barmish
B. R.
1985
, “Necessary and Sufficient Conditions for Quadratic Stabilizability of an Uncertain System
,” Journal of Optimization Theory and Applications
, Vol. 46
, pp. 399
–408
.2.
Barmish
B. R.
Corless
M.
Leitmann
1983
, “A New Class of Stabilizing Controllers for Uncertain Dynamical Systems
,” SIAM Journal of Control and Optimization
, Vol. 21
, pp. 246
–255
.3.
Barmish
B. R.
Leitmann
G.
1982
, “On Ultimate Boundedness Control of Uncertain Systems in the Absence of Matching Conditions
,” IEEE Transactions on Automatic Control
, Vol. 27
, pp. 153
–157
.4.
Chen, Y. H., 1994, “Robust Control Design for a Class of Mismatched Uncertain Nonlinear Systems,” American Control Conference, Baltimore, pp. 796–800.
5.
Chen, Y. H., and J. S. Chen, 1991, “Robust Control of Uncertain Systems with Time-Varying Uncertainty—An Optimization Setting,” Mechanics and Control, J. M. Skowronski, H. Flasher, and R. S. Guttalu, eds., pp. 97–114, Springer-Verlag, New York.
6.
Chen
Y. H.
Leitmann
G.
1987
, “Robustness of Uncertain Systems in the Absence of Matching Assumptions
,” International Journal of Control
, Vol. 45
, pp. 1527
–1542
.7.
Corless
M. J.
Leitmann
G.
1981
, “Continuous State Feedback Guaranteeing Uniform Ultimate Boundedness for Uncertain Dynamic Systems
,” IEEE Transactions on Automatic Control
, Vol. 26
, pp. 1139
–1144
.8.
Corless, M., and Leitmann, G., 1990, “Deterministic Control of Uncertain Systems: A Lyapunov Theory Approach,” Variable Structure Control Systems, A. Zinober, ed., IEE Control Engineering Series 40, Peter Peregrinus Ltd., London.
9.
Ehrhard
P.
Muller
U.
1990
, “Dynamic Behavior of Natural Convection in a Single-Phase Loop
,” Journal of Fluid Mechanics
, Vol. 217
, pp. 487
–518
.10.
Freeman, R. A., and Kokotovic, P. V., 1992, “A New Lyapunov Function for the Backstepping of Softer Robust Nonlinear Control Laws,” Nonlinear Control System Design Symposium, Bordeaux, France.
11.
Gavel
D. T.
Siljak
D. D.
1989
, “Decentralized Adaptive Control: Structural Conditions for Stability
,” IEEE Transactions on Automatic Control
, Vol. 129
, pp. 413
–426
.12.
Geromel
J. C.
Peres
P. L.
Bernussou
J.
1991
, “On a Convex Parameter Space Method for Linear Control Design of Uncertain Systems
,” SIAM Journal of Control and Optimization
, Vol. 29
, pp. 381
–402
.13.
Gu
K.
Chen
Y. H.
Zhody
M. A.
Loh
N. K.
1991
, “Quadratic Stabilizability of Uncertain Systems: A Two Level Optimization Setup
,” Automatica
, Vol. 27
, pp. 161
–165
.14.
Kanellakopoulos, I., Kokotovic, P. V., and Middleton, R. H., 1990, “Observer-Based Adaptive Control of Nonlinear Systems Under Matching Conditions,” Proceedings of the 1990 American Control Conference, San Diego, pp. 549–555.
15.
Lorenz
E. N.
1963
, “Deterministic Nonperiodic Flow
,” Journal of The Atmospheric Sciences
, Vol. 20
, pp. 130
–141
.16.
Ott
E.
Grebogi
C.
Yorke
J. A.
1990
, “Controlling Chaos
,” Physical Review Letters
, Vol. 64
, pp. 1196
–1199
.17.
Petersen
I. R.
Hollot
C. V.
1986
, “A Riccati Equation Approach to the Stabilization of Uncertain Linear Systems
,” Automatica
, Vol. 22
, pp. 397
–411
.18.
Salam
F. M. A.
Bai
S.
1988
, IEEE Transactions on Circuits and Systems
, Vol. 35
, pp. 842
–849
.19.
Schmitendorf
W. E.
1988
, “Designing Stabilizing Controllers for Uncertain Systems Using the Riccati Equation Approach
,” IEEE Transactions on Automatic Control
, Vol. 33
, pp. 376
–379
.20.
Singer
J.
Wang
Y-Z.
Bau
H. H.
1991
, “Controlling a Chaotic System
,” Physical Review Letters
, Vol. 66
, pp. 1123
–1125
.21.
Swei, S. M., Rotea, M. A., and Corless, M., 1994, “System Order Reduction in Robust Stabilization Problems,” International Journal of Control, to appear.
22.
Thorpe
J. S.
Barmish
B. R.
1981
, “On Guaranteed Stability of Uncertain Systems via Linear Control
,” Journal of Optimization Theory and Applications
, Vol. 35
, pp. 559
–579
.23.
Tsitras
P.
Kelley
H. J.
1991
, “Drag-Law Effects in the Goddard Problem
,” Automatica
, Vol. 27
, pp. 481
–490
.24.
Vincent
T. L.
Yu
J.
1991
, “Control of a Chaotic System
,” Dynamics and Control: An International Journal
, Vol. 1
, pp. 35
–52
.
This content is only available via PDF.
Copyright © 1995
by The American Society of Mechanical Engineers
You do not currently have access to this content.