We study the control design problem for uncertain nonlinear systems. A new matching condition is presented. The main idea is to explore the route through which the (worst case) uncertainty may affect the stability. This route is then used to establish the new matching condition. Compared with the previous case, the current matching condition prescribes the route nonlinearly while the early matching condition is a special case of the linear description. A class of robust controls, which guarantees practical stability, can be designed based on this new matching condition. The size of the uniform ultimate boundedness ball can be made arbitrarily small by an appropriate choice of a design parameter.

1.
Barmish
B. R.
,
1985
, “
Necessary and Sufficient Conditions for Quadratic Stabilizability of an Uncertain System
,”
Journal of Optimization Theory and Applications
, Vol.
46
, pp.
399
408
.
2.
Barmish
B. R.
,
Corless
M.
, and
Leitmann
,
1983
, “
A New Class of Stabilizing Controllers for Uncertain Dynamical Systems
,”
SIAM Journal of Control and Optimization
, Vol.
21
, pp.
246
255
.
3.
Barmish
B. R.
, and
Leitmann
G.
,
1982
, “
On Ultimate Boundedness Control of Uncertain Systems in the Absence of Matching Conditions
,”
IEEE Transactions on Automatic Control
, Vol.
27
, pp.
153
157
.
4.
Chen, Y. H., 1994, “Robust Control Design for a Class of Mismatched Uncertain Nonlinear Systems,” American Control Conference, Baltimore, pp. 796–800.
5.
Chen, Y. H., and J. S. Chen, 1991, “Robust Control of Uncertain Systems with Time-Varying Uncertainty—An Optimization Setting,” Mechanics and Control, J. M. Skowronski, H. Flasher, and R. S. Guttalu, eds., pp. 97–114, Springer-Verlag, New York.
6.
Chen
Y. H.
, and
Leitmann
G.
,
1987
, “
Robustness of Uncertain Systems in the Absence of Matching Assumptions
,”
International Journal of Control
, Vol.
45
, pp.
1527
1542
.
7.
Corless
M. J.
, and
Leitmann
G.
,
1981
, “
Continuous State Feedback Guaranteeing Uniform Ultimate Boundedness for Uncertain Dynamic Systems
,”
IEEE Transactions on Automatic Control
, Vol.
26
, pp.
1139
1144
.
8.
Corless, M., and Leitmann, G., 1990, “Deterministic Control of Uncertain Systems: A Lyapunov Theory Approach,” Variable Structure Control Systems, A. Zinober, ed., IEE Control Engineering Series 40, Peter Peregrinus Ltd., London.
9.
Ehrhard
P.
, and
Muller
U.
,
1990
, “
Dynamic Behavior of Natural Convection in a Single-Phase Loop
,”
Journal of Fluid Mechanics
, Vol.
217
, pp.
487
518
.
10.
Freeman, R. A., and Kokotovic, P. V., 1992, “A New Lyapunov Function for the Backstepping of Softer Robust Nonlinear Control Laws,” Nonlinear Control System Design Symposium, Bordeaux, France.
11.
Gavel
D. T.
, and
Siljak
D. D.
,
1989
, “
Decentralized Adaptive Control: Structural Conditions for Stability
,”
IEEE Transactions on Automatic Control
, Vol.
129
, pp.
413
426
.
12.
Geromel
J. C.
,
Peres
P. L.
, and
Bernussou
J.
,
1991
, “
On a Convex Parameter Space Method for Linear Control Design of Uncertain Systems
,”
SIAM Journal of Control and Optimization
, Vol.
29
, pp.
381
402
.
13.
Gu
K.
,
Chen
Y. H.
,
Zhody
M. A.
, and
Loh
N. K.
,
1991
, “
Quadratic Stabilizability of Uncertain Systems: A Two Level Optimization Setup
,”
Automatica
, Vol.
27
, pp.
161
165
.
14.
Kanellakopoulos, I., Kokotovic, P. V., and Middleton, R. H., 1990, “Observer-Based Adaptive Control of Nonlinear Systems Under Matching Conditions,” Proceedings of the 1990 American Control Conference, San Diego, pp. 549–555.
15.
Lorenz
E. N.
,
1963
, “
Deterministic Nonperiodic Flow
,”
Journal of The Atmospheric Sciences
, Vol.
20
, pp.
130
141
.
16.
Ott
E.
,
Grebogi
C.
, and
Yorke
J. A.
,
1990
, “
Controlling Chaos
,”
Physical Review Letters
, Vol.
64
, pp.
1196
1199
.
17.
Petersen
I. R.
, and
Hollot
C. V.
,
1986
, “
A Riccati Equation Approach to the Stabilization of Uncertain Linear Systems
,”
Automatica
, Vol.
22
, pp.
397
411
.
18.
Salam
F. M. A.
, and
Bai
S.
,
1988
,
IEEE Transactions on Circuits and Systems
, Vol.
35
, pp.
842
849
.
19.
Schmitendorf
W. E.
,
1988
, “
Designing Stabilizing Controllers for Uncertain Systems Using the Riccati Equation Approach
,”
IEEE Transactions on Automatic Control
, Vol.
33
, pp.
376
379
.
20.
Singer
J.
,
Wang
Y-Z.
, and
Bau
H. H.
,
1991
, “
Controlling a Chaotic System
,”
Physical Review Letters
, Vol.
66
, pp.
1123
1125
.
21.
Swei, S. M., Rotea, M. A., and Corless, M., 1994, “System Order Reduction in Robust Stabilization Problems,” International Journal of Control, to appear.
22.
Thorpe
J. S.
, and
Barmish
B. R.
,
1981
, “
On Guaranteed Stability of Uncertain Systems via Linear Control
,”
Journal of Optimization Theory and Applications
, Vol.
35
, pp.
559
579
.
23.
Tsitras
P.
, and
Kelley
H. J.
,
1991
, “
Drag-Law Effects in the Goddard Problem
,”
Automatica
, Vol.
27
, pp.
481
490
.
24.
Vincent
T. L.
, and
Yu
J.
,
1991
, “
Control of a Chaotic System
,”
Dynamics and Control: An International Journal
, Vol.
1
, pp.
35
52
.
This content is only available via PDF.
You do not currently have access to this content.