An integrated time domain state space identification technique for structural systems is presented. This technique integrates the Observability Range Space Extraction identification algorithm, Balanced Realization model reduction algorithm, and Least Square model updating algorithm to generate low order and highly accurate state space models for structural systems based upon time domain data. The algorithms are integrated in such a manner that the Observability Range Space Extraction identification algorithm is used to generate an initial overparameterized state space model and then the Balanced Realization model reduction and Least Square model updating algorithms are used to iteratively reduce and update the model to achieve minimum prediction errors in time domain. We shall present the Observability Range Space Extraction identification algorithm and the Least Square model updating algorithm and discuss the integrated identification technique. The MIT Middeck Active Control Experiment (MACE) is used as an application example. MACE is an active structure control experiment to be conducted in the Space Shuttle middeck. Results of ground experiments using this technique will be discussed.

1.
Hollkamp
J. J.
,
Batill
S. M.
,
1992
, “
A Recursive Algorithm for Discrete Time Domain Parameter Identification
,”
ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL
, Vol.
114
, No.
1
, pp.
27
33
.
2.
Juang
J. N.
, and
Pappa
R. S.
,
1985
, “
An Eigensystem Realization Algorithm (ERA) for Model Parameter Identification and Model Reduction
,”
Journal of Guidance, Control, and Dynamics
, Vol.
8
, No.
5
, pp.
620
627
.
3.
Juang, J. N., Phan, M., Horta, L. G., and Longman, R. W., 1991, “Identification of Observer/Kalman Filter Markov Parameters: Theory and Experiment,” Proceedings of the AIAA Guidance, Navigation, and Control Conference, New Orleans, LA, Aug.
4.
King
A. M.
,
Desai
U. B.
, and
Skelton
R. E.
,
1988
, “
A Generalized Approach to q-Markov Covariance Equivalent Realization of Discrete Systems
,”
Automatica
, Vol.
24
, No.
4
, pp.
507
515
.
5.
Liu
K.
, and
Skelton
R. E.
,
1993
, “
Q-Markov Covariance Equivalent Realization and its Application to Flexible Structure Identification
,”
AIAA Journal of Guidance, Control, and Dynamics
, Vol.
16
, No.
2
, pp.
308
319
.
6.
Liu, K., 1992, “Identification of Multi-Input and Multi-Output Systems by Observability Range Space Extraction,” Proceedings of 31st IEEE Conference on Decision and Control, Tucson, AR, Dec.
7.
Ljung, L., 1987, System Identification—Theory for the User, Prentice-Hall, Englewood Cliffs, N.J.
8.
Miller, D. W., Sepe, R. B., Rey, D., Saarmaa, E., Crawley, E. F., 1992, “The Middeck Active Control Experiment (MACE),” Proceedings of 5th NASA/DOD CSI Technical Conference, Tahoe, CA, Mar.
9.
De Moor, B., VandeWalle, J., Moonen, M., Vandenberghe, L., Van Mieghem, P., 1988, “A Geometrical Strategy for the Identification of Linear Variable Systems with Singular Value Decomposition,” Proceedings of the 1988 IFAC Symposium on Identification and System Parameter Estimation, Beijing, China, Aug.
10.
De Moor, B., VandeWalle, J., Moonen, M., Vandenberghe, L., 1988, “A Geometrical Approach for the Identification of State Space Models with Singular Value Decomposition,” Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, New York, Apr.
11.
Moonen
M.
,
Moor
B. D.
,
Vandenberghe
L.
, and
Vandewalle
J.
,
1989
, “
On-and Off-Line Identification of Linear State Space Models
,”
Int. J. Control
, Vol.
49
, No.
1
, pp.
219
232
.
12.
Moore
B. C.
,
1981
, “
Principal Component Analysis in Linear Systems: Controllability, Observability, and Model Reduction
,”
IEEE Trans. on Automatic Control
, Vol.
26
, No.
1
, pp.
17
32
.
13.
Pappa
R. S.
, and
Ibrahim
S. R.
,
1981
, “
A Parametric Study of the Ibrahim Time Domain Modal Identification Algorithm
,”
The Shock and Vibration Bulletin
, Vol.
51
, No.
3
, pp.
43
51
.
14.
van der Veen, A., Deprettere, E., and Swindlehurst, L., 1991, “SVD-Based Estimation of Low-Rank System Parameters,” Deprettere, E., and van der Veen, A., eds., Algorithms and Parallel VLSI Architectures, Elsevier Science Publishers, Amsterdam.
15.
Vold
H.
,
Kundrat
J.
,
Rocklin
G.
, and
Russell
R.
,
1982
, “
A Multi-Modal Estimation Algorithm for Mini-Computers
,”
SAE Transactions
, Vol.
91
, No.
1
, pp.
815
821
.
16.
Kwakernaak, H., and Sivan, R., 1972, Linear Optimal Control Systems, Wiley, New York.
17.
Papoulis, A., 1984, Probability, Random Variables, and Stochastic Processes, McGraw-Hill, New York.
This content is only available via PDF.
You do not currently have access to this content.