Examination of existing joint designs for robot wrist applications has indicated that a spherical wrist motor offers a major performance advantage in trajectory planning and control as compared to the popular three-consecutive-rotational joint wrist. The tradeoff, however, is the complexity of the dynamic modeling and control. This paper presents the dynamic modeling and the control strategy of a three degree-of-freedom (DOF) variable-reluctance (VR) spherical motor which presents some attractive possibilities by combining pitch, roll, and yaw motion in a single joint. The spherical motor dynamics consist of the rotor dynamics and a torque model. The torque model is described as a function of coil excitations and a permeance model in terms of the relative position between the rotor and the stator. Both the forward dynamics which determine the rotor motion as a result of activating the electromagnetic coils and the inverse model which determines the coil excitations required to generate the desired torque are derived in this paper. The solution to the forward dynamics of the spherical motor is unique, but the inverse model has many solutions and therefore an optimization is desired. Experimental results verifying the dynamic model are presented. The control of a VR spherical motor consists of two parts; namely, the control of the rotor dynamics with the actuating torque as system input, and the determination of the optimal electrical inputs for a specified actuating torque. The simulation results and implementation issues in determining the optimal control input vectors are addressed. It is expected that the resulting analysis will serve as a basis for dynamic modeling, motion control development, and design optimization of the VR spherical motor.
Skip Nav Destination
Article navigation
March 1996
Technical Papers
Dynamic Modeling and Control of a Ball-Joint-Like Variable-Reluctance Spherical Motor
Kok-Meng Lee,
Kok-Meng Lee
The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405
Search for other works by this author on:
Ronald B. Roth,
Ronald B. Roth
The HV Technologies, Inc., Trenton, GA 30572
Search for other works by this author on:
Zhi Zhou
Zhi Zhou
AT&T Beil Labs., 2000 Northeast Expressway, Norcross, GA 30071
Search for other works by this author on:
Kok-Meng Lee
The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405
Ronald B. Roth
The HV Technologies, Inc., Trenton, GA 30572
Zhi Zhou
AT&T Beil Labs., 2000 Northeast Expressway, Norcross, GA 30071
J. Dyn. Sys., Meas., Control. Mar 1996, 118(1): 29-40 (12 pages)
Published Online: March 1, 1996
Article history
Received:
August 25, 1993
Online:
December 3, 2007
Citation
Lee, K., Roth, R. B., and Zhou, Z. (March 1, 1996). "Dynamic Modeling and Control of a Ball-Joint-Like Variable-Reluctance Spherical Motor." ASME. J. Dyn. Sys., Meas., Control. March 1996; 118(1): 29–40. https://doi.org/10.1115/1.2801148
Download citation file:
Get Email Alerts
Fault Detection of Automotive Engine System Based on Canonical Variate Analysis Combined With Bhattacharyya Distance
J. Dyn. Sys., Meas., Control (July 2025)
Modeling and Experimental Validation of Flow Ripple in a Variable Displacement Linkage Pump
J. Dyn. Sys., Meas., Control
Related Articles
Design Optimization of a Three Degrees-of-Freedom Variable-Reluctance Spherical Wrist Motor
J. Eng. Ind (August,1995)
Robust Dynamic Modeling and Trajectory Tracking Controller of a Universal Omni-Wheeled Mobile Robot
Letters Dyn. Sys. Control (October,2022)
A Spherical DC Servo Motor With Three Degrees of Freedom
J. Dyn. Sys., Meas., Control (September,1989)
A New Type of Controllable Mechanical Press: Motion Control and Experiment Validation
J. Manuf. Sci. Eng (November,2005)
Related Chapters
QP Based Encoder Feedback Control
Robot Manipulator Redundancy Resolution
Time-Varying Coefficient Aided MM Scheme
Robot Manipulator Redundancy Resolution
Fans and Air Handling Systems
Thermal Management of Telecommunications Equipment