In this paper, we address two issues: digital redesign of a continuous-time interval system using an interval chebyshev quadrature approximation method; and translation of the newly digitally redesigned pulse-amplitude modulated (PAM) controller into an equivalent pulse-width modulated (PWM) controller via a second-order Taylor-series approximation method. Using this new interval digital redesign technique, the dynamic states of the digitally controlled sampled-data interval system are able to closely match those of the original analogously controlled continuous-time uncertain system. Three illustrative examples are provided to demonstrate the effectiveness of the proposed methods.

1.
Andeen
 
R. E.
,
1960
, “
The Principle of Equivalent Areas
,”
Trans. AIEE(Applications and Industry)
, Vol.
79
, pp.
332
336
.
2.
Anderson
 
B. D. O.
,
1993
, “
Controller Design; Moving from Theory to Practice
,”
IEEE Control Systems
, Vol.
13
, pp.
16
25
.
3.
Astrom, K. J., and Wittenmark, B., 1984, Computer Controlled Systems, Prentice-Hall, Englewood Cliffs, N.J.
4.
Barmish
 
B. R.
,
Pearson
 
J. B.
,
Francis
 
B. A.
, and
Tannenbaum
 
A.
,
1991
, “
A Lifting Technique for Linear Periodic Systems with Applications to Sampled-data Control
,”
Systems and Control Letters
, Vol.
17
, No.
2
, pp.
79
88
.
5.
Bernelli-Zazzera
 
F.
, and
Mantegazza
 
P.
,
1992
, “
Pulse-Width Equivalent to Pulse-Amplitude Discrete Control of Linear Systems
,”
Journal of Guidance, Control, and Dynamics
, Vol.
15
, pp.
461
467
.
6.
Chen
 
M. Y.
, and
Hwang
 
C.
,
1989
, “
Approximation of Irrational Matrix Functions and its Application to Continuous-Discrete Model Conversion
,”
ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL
, Vol.
III
, pp.
142
145
.
7.
Chen
 
T.
, and
Francis
 
B. A.
,
1991
, “
H2-optimal Sampled-data Control
,”
IEEE Trans. Automat. Control
, Vol.
AC-36
, No.
4
, pp.
387
397
.
8.
Chen
 
T.
, and
Qiu
 
L.
,
1994
, “
H∞ Design of General Multirate Sampled-data Control Systems
,”
Automatica
, Vol.
30
, No.
7
, pp.
1139
1152
.
9.
Deif, A., 1986, Sensitivity Analysis in Linear Systems, Springer-Verlag, New York.
10.
Doyle
 
J. C.
,
Glover
 
K.
,
Khargonekar
 
P. P.
, and
Francis
 
B. A.
,
1989
, “
State-Space Solution to Standard H2 and H Control Problems
,”
IEEE Trans. Automat. Control
, Vol.
AC-34
, pp.
831
847
.
11.
Horng
 
I. R.
,
Horng
 
H. Y.
, and
Chou
 
J. H.
,
1993
, “
Eigenvalue Clustering in Subregions of the Complex Plane for Interval Dynamic Systems
,”
Int. J. Systems Sci.
, Vol.
24
, pp.
901
914
.
12.
Kolev, L. V., 1993, Interval Methods for Circuit Analysis, World Scientific, Singapore.
13.
Kubamba
 
P. T.
, and
Hara
 
S.
,
1993
, “
Worst-Case Analysis and Design of Sampled-data Control Systems
,”
IEEE Trans. Automat. Control
, Vol.
AC-38
, No.
9
, pp.
1337
1357
.
14.
Kuo, B. C., 1980, Digital Control Systems, Holt, Rinehart and Winston, New York.
15.
Moler
 
C.
, and
Van Loan
 
C.
,
1978
, “
Nineteen Dubious Ways to Compute the Exponential of a Matrix
,”
SIAM Rev.
, Vol.
20
, pp.
801
836
.
16.
Moore, R. M., 1966, Interval Analysis, Prentice-Hall, Englewood Cliff, N.J.
17.
Oppenheimer
 
E. P.
, and
Michel
 
A. N.
,
1989
a, “
Application of Interval Analysis Techniques to Linear System: Part-I, Fundamental Results
,”
IEEE Transactions on Circuits and Systems
, Vol.
35
, pp.
1129
1138
.
18.
Oppenheimer
 
E. P.
, and
Michel
 
A. N.
,
1989
b, “
Application of Interval Analysis Techniques to Linear System: Part-II, the Interval Matrix Exponential Function
,”
IEEE Transactions on Circuits and Systems
, Vol.
35
, pp.
1230
1242
.
19.
Oppenheimer
 
E. P.
, and
Michel
 
A. N.
,
1989
c, “
Application of Interval Analysis Techniques to Linear System: Part-III, Initial Value Problems
,”
IEEE Transactions on Circuits and Systems
, Vol.
35
, pp.
1243
1256
.
20.
Ralston, A., 1965, A First Course in Numerical Analysis, McGraw-Hill, New York.
21.
Sezer, M. E., and Siljak, D. D., 1993, “On Stability of Interval Matrices,” Proc. 1993 American Control Conference, San Francisco, CA, pp. 3108–3111.
22.
Shieh
 
L. S.
,
Tsai
 
J. S. H.
, and
Lian
 
S. R.
,
1986
, “
Determining Continuous-time State Equations from Discrete-time State Equations via the Principal qth Root Method
,”
IEEE Trans. Automat. Control
, Vol.
AC-31
, pp.
454
457
.
23.
Shieh
 
L. S.
,
Gu
 
J.
, and
Bao
 
Y. L.
,
1993
, “
Model Conversions of Uncertain Linear Systems Using the Pade and Inverse-Pade Method
,”
IEEE Proc.-D
, Vol.
140
, pp.
455
464
.
24.
Sutton, G. P., 1986, Rocket Propulsion Elements: An Introduction to the Engineering of Rockets, Wiley, New York.
25.
Tsai
 
J. S. H.
,
Shieh
 
L. S.
,
Zhang
 
J. L.
, and
Coleman
 
N. P.
,
1989
, “
Digital Redesign of Pseudo-Continuous-Time Suboptimal Regulators for Large-Scale Discrete Systems
,”
Control Theory and Advanced Technology
, Vol.
5
, pp.
37
65
.
26.
Tsai
 
J. S. H.
,
Shieh
 
L. S.
, and
Zhang
 
J. L.
,
1993
, “
An Improvement of the Digital Redesign Method Based on the Block-pulse Function Approximation
,”
Circuits, Systems and Signal Processing
, Vol.
12
, No.
1
, pp.
37
49
.
27.
Veillette, R. J., Medanic, J. V., and Perkins, W. R., 1989, “Robust Stabilization and Disturbance Rejection for Systems with Structured Uncertainty,” Proceedings of the 28th IEEE Conference on Decision and Control, Tampa, FL, pp. 936–941.
28.
Wang
 
K.
,
Michel
 
A. N.
, and
Liu
 
D.
,
1994
, “
Necessary and Sufficient Conditions for the Hurwitz and Schur Stability of Interval Matrices
,”
IEEE Trans. Automatic Control
, Vol.
39
, No.
6
, pp.
1251
1255
.
This content is only available via PDF.
You do not currently have access to this content.