In this paper, we address two issues: digital redesign of a continuous-time interval system using an interval chebyshev quadrature approximation method; and translation of the newly digitally redesigned pulse-amplitude modulated (PAM) controller into an equivalent pulse-width modulated (PWM) controller via a second-order Taylor-series approximation method. Using this new interval digital redesign technique, the dynamic states of the digitally controlled sampled-data interval system are able to closely match those of the original analogously controlled continuous-time uncertain system. Three illustrative examples are provided to demonstrate the effectiveness of the proposed methods.
Issue Section:
Technical Papers
1.
Andeen
R. E.
1960
, “The Principle of Equivalent Areas
,” Trans. AIEE(Applications and Industry)
, Vol. 79
, pp. 332
–336
.2.
Anderson
B. D. O.
1993
, “Controller Design; Moving from Theory to Practice
,” IEEE Control Systems
, Vol. 13
, pp. 16
–25
.3.
Astrom, K. J., and Wittenmark, B., 1984, Computer Controlled Systems, Prentice-Hall, Englewood Cliffs, N.J.
4.
Barmish
B. R.
Pearson
J. B.
Francis
B. A.
Tannenbaum
A.
1991
, “A Lifting Technique for Linear Periodic Systems with Applications to Sampled-data Control
,” Systems and Control Letters
, Vol. 17
, No. 2
, pp. 79
–88
.5.
Bernelli-Zazzera
F.
Mantegazza
P.
1992
, “Pulse-Width Equivalent to Pulse-Amplitude Discrete Control of Linear Systems
,” Journal of Guidance, Control, and Dynamics
, Vol. 15
, pp. 461
–467
.6.
Chen
M. Y.
Hwang
C.
1989
, “Approximation of Irrational Matrix Functions and its Application to Continuous-Discrete Model Conversion
,” ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL
, Vol. III
, pp. 142
–145
.7.
Chen
T.
Francis
B. A.
1991
, “H2-optimal Sampled-data Control
,” IEEE Trans. Automat. Control
, Vol. AC-36
, No. 4
, pp. 387
–397
.8.
Chen
T.
Qiu
L.
1994
, “H∞ Design of General Multirate Sampled-data Control Systems
,” Automatica
, Vol. 30
, No. 7
, pp. 1139
–1152
.9.
Deif, A., 1986, Sensitivity Analysis in Linear Systems, Springer-Verlag, New York.
10.
Doyle
J. C.
Glover
K.
Khargonekar
P. P.
Francis
B. A.
1989
, “State-Space Solution to Standard H2 and H∞ Control Problems
,” IEEE Trans. Automat. Control
, Vol. AC-34
, pp. 831
–847
.11.
Horng
I. R.
Horng
H. Y.
Chou
J. H.
1993
, “Eigenvalue Clustering in Subregions of the Complex Plane for Interval Dynamic Systems
,” Int. J. Systems Sci.
, Vol. 24
, pp. 901
–914
.12.
Kolev, L. V., 1993, Interval Methods for Circuit Analysis, World Scientific, Singapore.
13.
Kubamba
P. T.
Hara
S.
1993
, “Worst-Case Analysis and Design of Sampled-data Control Systems
,” IEEE Trans. Automat. Control
, Vol. AC-38
, No. 9
, pp. 1337
–1357
.14.
Kuo, B. C., 1980, Digital Control Systems, Holt, Rinehart and Winston, New York.
15.
Moler
C.
Van Loan
C.
1978
, “Nineteen Dubious Ways to Compute the Exponential of a Matrix
,” SIAM Rev.
, Vol. 20
, pp. 801
–836
.16.
Moore, R. M., 1966, Interval Analysis, Prentice-Hall, Englewood Cliff, N.J.
17.
Oppenheimer
E. P.
Michel
A. N.
1989
a, “Application of Interval Analysis Techniques to Linear System: Part-I, Fundamental Results
,” IEEE Transactions on Circuits and Systems
, Vol. 35
, pp. 1129
–1138
.18.
Oppenheimer
E. P.
Michel
A. N.
1989
b, “Application of Interval Analysis Techniques to Linear System: Part-II, the Interval Matrix Exponential Function
,” IEEE Transactions on Circuits and Systems
, Vol. 35
, pp. 1230
–1242
.19.
Oppenheimer
E. P.
Michel
A. N.
1989
c, “Application of Interval Analysis Techniques to Linear System: Part-III, Initial Value Problems
,” IEEE Transactions on Circuits and Systems
, Vol. 35
, pp. 1243
–1256
.20.
Ralston, A., 1965, A First Course in Numerical Analysis, McGraw-Hill, New York.
21.
Sezer, M. E., and Siljak, D. D., 1993, “On Stability of Interval Matrices,” Proc. 1993 American Control Conference, San Francisco, CA, pp. 3108–3111.
22.
Shieh
L. S.
Tsai
J. S. H.
Lian
S. R.
1986
, “Determining Continuous-time State Equations from Discrete-time State Equations via the Principal qth Root Method
,” IEEE Trans. Automat. Control
, Vol. AC-31
, pp. 454
–457
.23.
Shieh
L. S.
Gu
J.
Bao
Y. L.
1993
, “Model Conversions of Uncertain Linear Systems Using the Pade and Inverse-Pade Method
,” IEEE Proc.-D
, Vol. 140
, pp. 455
–464
.24.
Sutton, G. P., 1986, Rocket Propulsion Elements: An Introduction to the Engineering of Rockets, Wiley, New York.
25.
Tsai
J. S. H.
Shieh
L. S.
Zhang
J. L.
Coleman
N. P.
1989
, “Digital Redesign of Pseudo-Continuous-Time Suboptimal Regulators for Large-Scale Discrete Systems
,” Control Theory and Advanced Technology
, Vol. 5
, pp. 37
–65
.26.
Tsai
J. S. H.
Shieh
L. S.
Zhang
J. L.
1993
, “An Improvement of the Digital Redesign Method Based on the Block-pulse Function Approximation
,” Circuits, Systems and Signal Processing
, Vol. 12
, No. 1
, pp. 37
–49
.27.
Veillette, R. J., Medanic, J. V., and Perkins, W. R., 1989, “Robust Stabilization and Disturbance Rejection for Systems with Structured Uncertainty,” Proceedings of the 28th IEEE Conference on Decision and Control, Tampa, FL, pp. 936–941.
28.
Wang
K.
Michel
A. N.
Liu
D.
1994
, “Necessary and Sufficient Conditions for the Hurwitz and Schur Stability of Interval Matrices
,” IEEE Trans. Automatic Control
, Vol. 39
, No. 6
, pp. 1251
–1255
.
This content is only available via PDF.
Copyright © 1996
by The American Society of Mechanical Engineers
You do not currently have access to this content.