This paper is devoted to the stabilization of the angular velocity of a rigid body via variable structure based controllers. The system is supposed to have only two control torques and to be subject to external disturbances. A finite time convergence is obtained by switching between a first-order and a second-order sliding mode controllers. [S0022-0434(00)00304-X]

1.
Byrnes
,
C. I.
, and
Isidori
,
A.
,
1991
, “
On the stabilization of rigid spacecraft
Automatica
,
27
, pp.
87
95
.
2.
Coron
,
J. M.
, and
Kerai
,
E.
,
1996
, “
Explicit feedbacks stabilizing the attitude of a rigid spacecraft with two control torques
,”
Automatica
,
32
, pp.
669
677
.
3.
Morin
,
P.
, and
Samson
,
C.
,
1997
, “
Time-varying exponential stabilization of the attitude of a rigid spacecraft with two controls
,”
IEEE Trans. Autom. Control
,
42
, pp.
528
534
.
4.
Astolfi
,
A.
, and
Rapaport
,
A.
,
1998
, “
Robust stabilization of the angular velocity of a rigid body
,”
Syst. Control Lett.
,
34
, pp.
257
267
.
5.
Nijmeier, H., and Van Der Schaft, A. J., 1990, Nonlinear Dynamics Control System, Springer-Verlag, Berlin.
6.
Outbib
,
R.
, and
Sallet
,
G.
,
1992
, “
Stabilization of the angular velocity of a rigid body revisited
,”
Syst. Control Lett.
,
18
, pp.
93
98
.
7.
Aeyels
,
D.
,
1985
, “
Stabilization by smooth feedback of the angular velocity of a rigid body
,”
Syst. Control Lett.
,
5
, pp.
59
63
.
8.
Aeyels
,
D.
, and
Szafranski
,
M.
,
1988
, “
Comments on the stability of the angular velocity of a rigid body
,”
Syst. Control Lett.
,
10
, pp.
35
39
.
9.
Sontag
,
E. D.
, and
Sussmann
,
H. J.
,
1989
, “
Further comments on the stability of the angular velocity of a rigid body
,”
Syst. Control Lett.
,
12
, pp.
213
217
.
10.
Emel’yanov
,
S. V.
,
Korovin
,
S. V.
, and
Levantovsky
,
L. V.
,
1993
, “
Higher Order Sliding Modes in Control Systems
,”
Diff. Equat.
,
29
, No.
11
, pp.
1627
1647
.
11.
Fridman, L., and Levant, A., 1996, “Sliding modes of higher order as a natural phenomenon in control theory,” F. Garofalo, L. Glielmo, eds., Robust Control via Variable Structure and Lyapunov Techniques, Lecture Notes in Control and Information Sciences 217, Springer-Verlag, pp. 107–133.
12.
Levant
,
A.
,
1993
, “
Sliding order and sliding accuracy in sliding mode control
,”
Int. J. Control
,
58
, No.
6
, pp.
1247
1263
.
13.
Bartolini
,
G.
,
Ferrara
,
A.
, and
Usai
,
E.
,
1998
, “
Chattering avoidance by second-order sliding mode control
,”
IEEE Trans. Autom. Control
,
43
, No.
2
, pp.
241
246
.
14.
Sira-ramirez
,
H.
,
1998
, “
Differential geometric methods in variable-structure control
,”
Int. J. Control
,
48
, No.
4
, pp.
1359
1390
.
15.
Utkin, V. I., 1992, Sliding Modes in Control Optimization, CCES, Springer-Verlag.
You do not currently have access to this content.