Issues of the robust stabilization for axial-flow compressor dynamics with respect to the uncertainty in axisymmetric characteristics are presented. This is achieved by the design of sliding mode controllers. By assuming an actuation directly modulating the mass flow such as the close-coupled valve, the domain of attraction for the unstalled operating equilibrium will be enlarged to a great extent. Nonlocal robust stability of the operating equilibrium, with respect to the uncertainty in the unstable branch of axisymmetric compressor characteristic, is also provided by the proposed control laws. Moreover, it is demonstrated that the robust control scheme can be employed to fulfill the task of stall recovery. The proposed stabilization design does not require an explicit form for compressor characteristic.

1.
Kerrebrock, J. L., 1990, Aircraft Engines and Gas Turbines, 2nd Ed., MIT Press.
2.
Paduano
,
J. D.
,
Epstein
,
A. H.
,
Valavani
,
L.
,
Longley
,
J. P.
,
Greitzer
,
E. M.
, and
Guenette
,
G. R.
,
1993
, “
Active Control of Rotating Stall In a Low Speed Axial Compressor
,”
ASME J. Turbomach.
,
115
, pp.
45
56
.
3.
Liaw
,
D.-C.
, and
Abed
,
E. H.
,
1996
, “
Active Control of Compressor Stall Inception: a Bifurcation-Theoretic Approach
,”
Automatica
,
32
, pp.
109
115
.
4.
Krstic´, M., Protz, J. M., Paduano, J. D., and Kokotovic´, P. V., 1995, “Backstepping Designs for Jet Engine Stall and Surge Control,” Proceedings of the 34th IEEE Conference on Decision and Control. pp. 3049–3055.
5.
Moore
,
F. K.
, and
Greitzer
,
E. M.
,
1986
, “
A Theory of Post-Stall Transients in Axial Compression Systems: Part I-Development of Equations
,”
ASME J. Eng. Gas Turbines Power
,
108
, pp.
68
76
.
6.
Badmus
,
O. O.
,
Chowdhury
,
S.
,
Eveker
,
K. M.
,
Nett
,
C. N.
, and
Rivera
,
C. J.
,
1995
, “
Simplified approach for control of rotating stall, Part I
,”
J. Propul. Power
,
11
, pp.
1195
1209
.
7.
Badmus
,
O. O.
,
Chowdhury
,
S.
,
Eveker
,
K. M.
,
Nett
,
C. N.
, and
Rivera
,
C. J.
,
1995
, “
Simplified approach for control of rotating stall, Part II
,”
J. Propul. Power
,
11
, pp.
1210
1223
.
8.
Liaw
,
D.-C.
, and
Huang
,
J.-T.
,
1998
, “
Global Stabilization of Axial Compressors Using Nonlinear Cancellation and Backstepping Designs
,”
Int. J. Syst. Sci.
,
29
, pp.
1345
1361
.
9.
Paduano
,
J. D.
,
Valavani
,
L.
, and
Epstein
,
A. H.
,
1993
, “
Parameter Identification of Compressor Dynamics during Closed-Loop Operation
,”
ASME J. Dyn. Syst., Meas., Control
,
115
, pp.
694
703
.
10.
Haddad, W. M., Fausz, J. L., Chellaboina, V., and Leonessa, A., 1997, “Nonlinear Robust Disturbance Rejection Controllers for Rotating Stall and Surge in Axial Flow Compressors,” Proceedings of the IEEE Conference on Control Applications, pp. 767–772.
11.
Utkin, V. I., 1987, “Discontinuous Control System: State of Art in Theory and Application,” 10th IFAC on Automation Control, Vol. 1, pp. 1782–1786.
12.
Simon, J. S., and Valavani, L., 1991, “A Lyapunov Based Nonlinear Control Scheme for Stabilizing a Basic Compression System Using a Close-Coupled Control Valve,” Proceedings of the 1991 American Control Conference, pp. 2398–2406.
13.
Hendricks
,
G. J.
, and
Gysling
,
D. L.
,
1994
, “
Theoretical study of sensor-actuator schemes for rotating stall control
,”
J. Propul. Power
,
10
, pp.
101
109
.
14.
Doedel, E. J., 1981, AUTO: A Program for the Automatic Bifurcation Analysis of Autonomous Systems. Congressus Numerantium, 30, pp. 265–284.
15.
McCaughan
,
F. E.
,
1989
, “
Application of Bifurcation Theory to Axial Flow Compressor Instability
,”
ASME J. Turbomach.
,
111
, pp.
426
433
.
16.
Harris, L. P., and Spang, H. A., 1991, “Compressor Modeling and Active Control of Stall/Surge,” Proc. 1991 American Control Conference, pp. 2392–2397.
17.
DeCarlo
,
R. A.
,
Zak
,
S. H.
, and
Matthews
,
G. P.
,
1988
, “
Variable Structure Control of Nonlinear Multivariable System: A Tutorial
,”
Proceedings of the IEEE
,
76
, pp.
212
232
.
18.
Slotine, J.-J. E., and Ji, W., 1991, Applied Nonlinear Control, Prentice-Hall, New Jersey.
You do not currently have access to this content.