An exponentially stable variable structure controller is presented for regulation of the angular displacement of a one-link flexible robot arm, while simultaneously stabilizing vibration transient in the arm. By properly selecting the sliding hyperplane, the governing equations which form a nonhomogenous boundary value problem are converted to homogenous ones, and hence, analytically solvable. The controller is then designed based on the original infinite dimensional distributed system which, in turn, removes some disadvantages associated with the truncated-model-base controllers. Utilizing only the arm base angular position and tip deflection measurements, an on-line perturbation estimation routine is introduced to overcome the measurement imperfections and ever-present unmodeled dynamics. Depending on the composition of the controller, some favorable features appear such as elimination of control spillovers, controller convergence at finite time, suppression of residual oscillations and simplicity of the control implementation. Numerical simulations along with experimental results are provided to demonstrate and validate the effectiveness of the proposed controller.

1.
Sinha
,
A.
,
1988
, “
Optimum Vibration Control of Flexible Structures for Specified Modal Decay Rates
,”
J. Sound Vib.
,
123
, No.
1
, pp.
185
188
.
2.
Skaar
,
S. B.
, and
Tucker
,
D.
,
1986
, “
Point Control of a One-link Flexible Manipulator
,”
ASME J. Appl. Mech.
,
53
, pp.
23
27
.
3.
Bayo
,
E.
,
1987
, “
A Finite-Element Approach to Control the End-point Motion of a Single-link Flexible Robot
,”
J. Rob. Syst.
,
4
, pp.
63
75
.
4.
Ge
,
S. S.
,
Lee
,
T. H.
, and
Zhu
,
G.
,
1997
, “
A Nonlinear Feedback Controller for a Single-link Flexible Manipulator Based on a Finite Element Method
,”
J. Rob. Syst.
,
14
, No.
3
, pp.
165
178
.
5.
Yuh
,
J.
,
1987
, “
Application of Discrete-time Model Reference Adaptive Control to a Flexible Single-link Robot
,”
J. Rob. Syst.
,
4
, pp.
621
630
.
6.
de Querioz
,
M. S.
,
Dawson
,
D. M.
,
Agrawal
,
M.
, and
Zhang
,
F.
,
1999
, “
Adaptive Nonlinear Boundary Control of a Flexible Link Robot Arm
,”
IEEE Trans. Rob. Autom.
,
15
, No.
4
, pp.
779
787
.
7.
Chalhoub
,
N. G.
, and
Ulsoy
,
A. G.
,
1987
, “
Control of Flexible Robot Arm: Experimental and Theoretical Results
,”
ASME J. Dyn. Syst., Meas., Control
,
109
, pp.
299
309
.
8.
de Querioz, M. S., Dawson, D. M., Nagarkatti, S. P., and Zhang, F., 2000, Lyapunov-Based Control of Mechanical Systems, Birkhauser Boston.
9.
Lou
,
Z. H.
,
1993
, “
Direct Strain Feedback Control of Flexible Robot Arms: New Theoretical and Experimental Results
,”
IEEE Trans. Autom. Control
,
38
, No.
11
, pp.
1610
1622
.
10.
Yeung
,
K. S.
, and
Chen
,
Y. P.
,
1989
, “
Regulation of a One-link Flexible Robot Arm using Sliding Mode Control Technique
,”
Int. J. Control
,
49
, No.
6
, pp.
1965
1978
.
11.
Singh
,
T.
,
Golnaraghi
,
M. F.
, and
Dubly
,
R. N.
,
1994
, “
Sliding-Mode/Shaped-Input Control of Flexible/Rigid Link Robots
,”
J. Sound Vib.
,
171
, No.
2
, pp.
185
200
.
12.
Jalili, N., Elmali, H., Moura, J., and Olgac, N., 1997, “Tracking Control of a Rotating Flexible Beam Using Frequency-Shaped Sliding Mode Control,” Proceedings of the 16th American Control Conference, pp. 2552–2556, Albuquerque, NM.
13.
Bontsema
,
J.
,
Cartain
,
R. F.
, and
Schumacher
,
J. M.
,
1988
, “
Robust Control of Flexible Systems: A Case Study
,”
Automatica
,
24
, pp.
177
186
.
14.
Zhu, G., Ge, S. S., and Lee, T. H., 1997, “Variable Structure Regulation of a Flexible Arm with Translational Base,” Proceedings of 36th IEEE Conference on Decision and Control, pp. 1361–1366, San Diego, CA.
15.
Elmali
,
H.
, and
Olgac
,
N.
,
1992
, “
Sliding Mode Control with Perturbation Estimation (SMCPE): A New Approach
,”
Int. J. Control
,
56
, No.
1
, pp.
923
941
.
16.
Jalili
,
N.
, and
Olgac
,
N.
,
1998
, “
Time-Optimal/Sliding Mode Control Implementation for Robust Tracking of Uncertain Flexible Structures
,”
Mechatronics
,
8
, No.
2
, pp.
121
142
.
17.
Luo, Z. H., Guo, B. Z., and Morgul, O., 1999, Stability and Stabilization of Finite Dimensional Systems with Applications, Springer-Verlag, London.
18.
Junkins, J. L., and Kim, Y., 1993, Introduction to Dynamics and Control of Flexible Structures, Washington, DC; AIAA Educational Series.
19.
Yeung
,
K. S.
, and
Chen
,
Y. P.
,
1988
, “
A New Controller Design for Manipulators using the Theory of Variable Structure Systems
,”
IEEE Trans. Autom. Control
,
33
, pp.
200
206
.
20.
Slotine, J. J., and Li, W., 1991, Applied Nonlinear Control, Prentice-Hall, NJ.
21.
Moura
,
J. T.
,
Roy
,
R. G.
, and
Olgac
,
N.
,
1997
, “
Frequency-Shaped Sliding Modes: Analysis and Experiments
,”
IEEE Trans. Control Syst. Technol.
5
, No.
4
, pp.
394
401
.
22.
Slotine
,
J. J.
, and
Sastry
,
S. S.
,
1983
, “
Tracking Control of Non-linear Systems using Sliding Surface with Application to Robot Manipulators
,”
Int. J. Control
,
38
, No.
2
, pp.
465
492
.
23.
MAPLE, Waterloo Maple Inc, Ontario Canada © 2000.
24.
Cannon
, Jr.,
R. H.
, and
Schmitz
,
E.
,
1984
, “
Initial Experiments on the end-point Control of a Flexible One-link Robot
,”
Int. J. Robot. Res.
,
3
, No.
3
, pp.
62
75
.
25.
Feliu
,
V.
,
Rattan
,
K. S.
, and
Brown
, Jr.,
H.
,
1990
, “
Adaptive Control of a Single-link Flexible Manipulator
,”
IEEE Control Syst. Mag.
,
10
, pp.
29
33
.
You do not currently have access to this content.