For joint tracking control of flexible robots, this paper presents a two-step design of controller: the bandwidth modulation with modal feedback approach. First, we focus on the design of rigid part’s motion controller considering the bandwidth of the rigid subsystem. We investigate the relationship between macro joint tracking performance and vibration suppression capability using the bandwidth parameter. After adjusting the bandwidth of rigid motion, the composite control, which is the second step consisting of rigid and flexible sub-controllers, is applied like singular perturbation approach. As the flexible sub-controller, we propose a direct modal feedback controller that is very simple, but effective to suppress the vibration. The validity and effectiveness of the proposed method are verified by experiments using a POSTECH 3-D flexible robot.

1.
Cannon
,
R. H.
, and
Schmitz
,
E.
,
1984
, “
Initial Experiments on the End-Point Control of a Flexible One-Link Robot
,”
Int. J. Robot. Res.
,
3
(
3
), pp.
62
75
.
2.
Bayo, E., 1988, “Computed Torque for the Position Control of Open-Chain Flexible Robots,” Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 316–321.
3.
Asada
,
H.
,
Ma
,
Z.-D.
, and
Tokumaru
,
H.
,
1990
, “
Inverse Dynamics of Flexible Robot Arms: Modeling and Computation for Trajectory Control
,”
ASME J. Dyn. Syst., Meas., Control
,
112
, pp.
177
185
.
4.
Kwon
,
D. S.
, and
Book
,
W. J.
,
1994
, “
A Time-Domain Inverse Dynamic Tracking Control of a Single-Link Flexible Manipulator
,”
ASME J. Dyn. Syst., Meas., Control
,
116
(
2
), pp.
193
200
.
5.
Zhao, H., and Chen, D., 1993, “Exact and Stable Tip Trajectory Tracking for Multi-Link Flexible Manipulator,” Proc. of IEEE Conf. on Decision and Control, pp. 1371–1376.
6.
Damaren
,
C. J.
,
1998
, “
Modal Properties and Control System Design for Two-Link Flexible Manipulators
,”
Int. J. Robot. Res.
,
17
(
6
), pp.
667
678
.
7.
Luca
,
A. D.
,
Lucibello
,
P.
, and
Ulivi
,
G.
,
1989
, “
Inversion Techniques for Trajectory Control of Flexible Robot Arms
,”
J. Rob. Syst.
,
6
(
4
), pp.
325
344
.
8.
Yim, W., 1993, “End-Point Trajectory Control, Stabilization, and Zero Dynamics of a Three-Link Flexible Manipulator,” Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 468–473.
9.
Trautman, C., and Wang, D., 1996, “Noncollocated Passive Control of a Flexible Link Manipulator,” Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 1107–1114.
10.
Siciliano
,
B.
, and
Book
,
W. J.
,
1988
, “
A Singular Perturbation Approach to Control of Lightweight Flexible Manipulators
,”
Int. J. Robot. Res.
,
7
(
4
), pp.
79
90
.
11.
Lewis, F. L., and Vandegrift, M., 1993, “Flexible Robot Arm Control by a Feedback Linearization/Singular Perturbation Approach,” Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 729–736.
12.
Cetinkunt
,
S.
, and
Book
,
W. J.
,
1990
, “
Performance Limitations of Joint Variable-Feedback Controllers Due to Manipulator Structural Flexibility
,”
IEEE Trans. Rob. Autom.
,
6
(
2
), pp.
219
231
.
13.
Konno
,
A.
,
Uchiyama
,
M.
,
Kito
,
Y.
, and
Murakami
,
M.
,
1997
, “
Configuration-Dependent Vibration Controllability of Flexible-Link Manipulators
,”
Int. J. Robot. Res.
,
16
(
4
), pp.
567
576
.
14.
Yoshikawa, T., Murakami, H., and Hosoda, K., 1990, “Modeling and Control of a Three Degree of Freedom Manipulator With Two Flexible Links,” Proc. of the 29th Conf. on Decision and Control, pp. 2532–2537.
15.
Loukianov, A., Dai, Y., and Uchiyama, M., 1997, “Trajectory Tracking of Spatial Flexible Link Manipulators Using Inverse Kinetmatics Solution and Vibration Suppression,” Proc. of Int. Conf. on Advanced Robotics, pp. 221–226.
16.
Arteaga
,
M. A.
,
1998
, “
On the Properties of a Dynamic Model of Flexible Robot Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
,
120
, pp.
8
14
.
17.
Arimoto, S., and Miyazaki, F., 1984, “Stability and Robustness of Pid Feedback Control for Robot Manipulators of Sensory Capability,” Robotics Research: The 1st Int. Symp., MIT Press, Cambridge, MA, pp. 783–799.
18.
Slotine
,
J.-J.
, and
Li
,
W.
,
1987
, “
On the Adaptive Control of Robot Manipulators
,”
Int. J. Robot. Res.
,
6
(
3
), pp.
49
59
.
19.
Sadgeh
,
N.
, and
Horowitz
,
R.,
,
1990
, “
Stability and Robustness Analysis of a Class of Adaptive Controllers for Robot Manipulators
,”
Int. J. Robot. Res.
,
9
(
3
), pp.
74
92
.
20.
Vidyasagar, M., 1993, Nonlinear Systems Analysis, second edition, Prentice Hall, Englewood Cliffs, N.J.
21.
Garcia
,
E.
, and
Inman
,
D. J.
,
1991
, “
Modeling of the Slewing Control of a Flexible Structure
,”
J. Guidance
,
14
(
4
), pp.
736
742
.
22.
Jacobus, R. F., and Serna, M., 1994, “Modal Analysis of a Three Dimensional Flexible Robot,” Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 2962–2967.
23.
Konno
,
A.
, and
Uchiyama
,
M.
,
1995
, “
Vibration Suppression Control of Spatial Flexible Manipulators
,”
Control Eng. Pract.
,
3
(
9
), pp.
1315
1321
.
24.
Gevarter
,
W. B.
,
1970
, “
Basic Relations for Control of Flexible Vehicles
,”
AIAA J.
8
(
4
), pp.
666
672
.
25.
Huseyin, K., 1978, Vibrations and Stability of Multiple Parameter Systems, Noordhoff Int. Publishing.
26.
Piche
,
R.
,
1990
, “
On the Symmetrizability of Structural Control Systems with Noncolocated Sensors and Actuators
,”
ASME J. Dyn. Syst., Meas., Control
112
, pp.
249
252
.
27.
Cheong, J., Chung, W. K., and Youm, Y., 2000, “Bandwidth Modulation of Rigid Subsystem for the Class of Flexible Robots,” Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 1478–1483.
28.
Kailath, T., 1980, Linear Systems, Prentice Hall.
You do not currently have access to this content.