When a continuous-time system is discretized using the zero-order hold, there is no simple relation which shows how the zeros of the continuous-time system are transformed by sampling. In this paper, for a discrete-time model of a collocated mass-damper-spring system, the asymptotic behavior of the zeros is analyzed with respect to the sampling period and the linear approximate expressions are given. In addition, the linear approximate expressions lead to a sufficient condition for all the zeros of the discrete-time model to lie inside the unit circle for sufficiently small sampling periods. The sufficient condition is satisfied when a damping matrix is positive definite. Moreover, an example is shown to illustrate the validity of the linear approximations. Finally, a comment for a noncollocated system is presented.

1.
Schrader
,
C. B.
, and
Sain
,
M. K.
,
1989
, “
Research on System Zeros: a Survey
,”
Int. J. Control
,
50
(
4
), pp.
1407
1433
.
2.
A˚stro¨m
,
K. J.
,
Hagander
,
P.
, and
Sternby
,
J.
,
1984
, “
Zeros of Sampled Systems
,”
Automatica
,
20
(
1
), pp.
31
38
.
3.
Goodwin, G. C., and Sin, K. S., 1984, Adaptive Filtering, Prediction and Control, Prentice-Hall, Englewood Cliffs, New Jersey.
4.
Williams
,
T.
,
1989
, “
Transmission-Zero Bounds for Large Space Structures, with Applications
,”
J. Guid. Control Dyn.
,
12
(
1
), pp.
33
38
.
5.
Miu
,
D. K.
, and
Yang
,
B.
,
1994
, “
On Transfer Function Zeros of General Colocated Control Systems with Mechanical Flexibilities
,”
ASME J. Dyn. Syst., Meas., Control
,
116
(
1
), pp.
151
154
.
6.
Lin
,
J. L.
, and
Juang
,
J. N.
,
1995
, “
Sufficient Conditions for Minimum-Phase Second-Order Linear Systems
,”
J. Vib. Control
,
1
(
2
), pp.
183
199
.
7.
Calafiore
,
G.
, and
Carabelli
,
S.
, and
Bona
,
B.
,
1997
, “
Structural Interpretation of Transmission Zeros for Matrix Second-Order Systems
,”
Automatica
,
33
(
4
), pp.
745
748
.
8.
Lin
,
J. L.
,
1999
, “
On Transmission Zeros of Mass-Dashpot-Spring Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
121
(
2
), pp.
179
183
.
9.
Tuscha´k, R., 1981, “Relations Between Transfer and Pulse Transfer Functions of Continuous Processes,” Proceedings of the 8th IFAC World Congress, Vol. 1, Kyoto, Japan, pp. 429–433.
10.
Keviczky, L., and Kumar, K. S. P., 1981, “On the Applicability of Certain Optimal Control Methods,” Proceedings of the 8th IFAC World Congress, Vol. 1, Kyoto, Japan, pp. 475–480.
11.
Bondarko
,
V. A.
,
1984
, “
Discretization of Continuous Linear Dynamic Systems-Analysis of the Methods
,”
Syst. Control Lett.
,
5
(
2
), pp.
97
101
.
12.
Hagiwara
,
T.
,
Yuasa
,
T.
, and
Araki
,
M.
,
1993
, “
Stability of the Limiting Zeros of Sampled-Data Systems with Zero- and First-Order Holds
,”
Int. J. Control
,
58
(
6
), pp.
1325
1346
.
13.
Hayakawa
,
Y.
,
Hosoe
,
S.
, and
Ito
,
M.
,
1983
, “
On the Limiting Zeros of Sampled Multivariable Systems
,”
Syst. Control Lett.
,
2
(
5
), pp.
292
300
.
14.
Weller
,
S. R.
,
1999
, “
Limiting Zeros of Decouplable MIMO Systems
,”
IEEE Trans. Autom. Control
,
AC-44
(
1
), pp.
129
134
.
15.
Ishitobi
,
M.
,
2000
, “
A Stability Condition of Zeros of Sampled Multivariable Systems
,”
IEEE Trans. Autom. Control
,
AC-45
(
2
), pp.
295
299
.
16.
Laub
,
A. J.
, and
Arnold
,
W. F.
,
1984
, “
Controllability and Observability Criteria for Multivariable Linear Second-Order Models
,”
IEEE Trans. Autom. Control
,
29
(
2
), pp.
163
165
.
17.
M.
Ikeda
,
1990
, “
Zeros and Their Relevance to Control-[III]; System Structure and Zeros (in Japanese
),”
Journal of the Society of Instrument and Control Engineers
,
29
(
5
), pp.
441
448
.
18.
Gantmacher, F. R., 1959, The Theory of Matrices, Vols. I and II, Chelsea, New York.
19.
Rosenbrock, H. H., 1970, State-space and Multivariable Theory. Nelson, London.
20.
Suda
,
N.
, and
Mutsuyoshi
,
E.
,
1978
, “
Invariant Zeros and Input-Output Structure of Linear, Time-Invariant Systems
,”
Int. J. Control
,
28
(
4
), pp.
525
535
.
21.
Suda, N., 1993, Linear Systems Theory (in Japanese). Asakura, Tokyo.
You do not currently have access to this content.