A mass-dashpot-spring system with proportional damping is considered in this paper. On the basis of an appropriate nonlinear mapping and the root-locus technique, the interlacing property of transmission zeros and poles is investigated if the columns of the input matrix are in the column space generated by the transpose of the output matrix. It is verified that transmission zeros interlace with poles on a specific circle and the nonpositive real axis segments for a proportional damping system. Finally, three examples are given to illustrate the property.

1.
Rosenbrock, H. H., 1970, State-Space and Multivariable Theory, Wiley-Interscience, New York.
2.
Chen, C. T., 1984, Linear System Theory and Design, Oxford University Press, Inc., New York.
3.
Miu
,
D. K.
,
1991
, “
Physical Interpretation of Transfer Function Zeros for Simple Control Systems With Mechanical Flexibilities
,”
ASME J. Dyn. Syst., Meas., Control
,
113
, pp.
419
424
.
4.
Miu
,
D. K.
, and
Yang
,
B.
,
1994
, “
On Transfer Function Zeros of General Collocated Control Systems With Mechanical Flexibilities
,”
ASME J. Dyn. Syst., Meas., Control
,
116
, pp.
151
154
.
5.
Lin
,
J. L.
, and
Juang
,
J. N.
,
1995
, “
Sufficient Conditions for Minimum-Phase Second-Order Linear Systems
,”
J. Vib. Control
,
1
, pp.
183
199
.
6.
Lin
,
J. L.
,
1999
, “
On Transmission Zeros of Mass-Dashpot-Spring Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
121
, pp.
179
183
.
7.
Lin
,
J. L.
,
Chen
,
S. J.
, and
Juang
,
J. N.
,
1999
, “
Minimum-Phase Robustness for Second-Order Linear Systems
,”
J. Guid., Control Dyn.
,
22
, pp.
229
234
.
8.
Chen
,
S. J.
,
Lin
,
J. L.
, and
Chan
,
K. C.
,
2002
, “
Minimum Phase Robustness for Uncertain State-Space Systems
,”
Int. J. Sys. Sci.
,
33
, pp.
1179
1186
.
9.
Qiu, L., and Davison, E. J., 1989, “The Stability Robustness of Generalized Eigenvalues,” IEEE Conference on Decision and Control, Tampa, Florida, pp. 1902–1907.
10.
Fong
,
I. K.
,
Su
,
J. H.
, and
Tseng
,
C. L.
,
1993
, “
Robustness Analysis of the Minimum Phase Property for Systems With Structured Uncertainties
,”
Journal of Control Systems and Technology
,
1
, pp.
75
82
.
11.
Jensen
,
P. S.
,
1976
, “
Stiffly Stable Methods for Undamped Second Order Equations of Motion
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
,
13
, pp.
549
563
.
12.
Park
,
K. C.
,
1977
, “
Practical Aspects of Numerical Time Integration
,”
Comp. Struct.
,
7
, pp.
343
353
.
13.
Horn, R. A., and Johnson, C. R., 1990, Matrix Analysis, Cambridge University Press, New York.
You do not currently have access to this content.