A mass-dashpot-spring system with proportional damping is considered in this paper. On the basis of an appropriate nonlinear mapping and the root-locus technique, the interlacing property of transmission zeros and poles is investigated if the columns of the input matrix are in the column space generated by the transpose of the output matrix. It is verified that transmission zeros interlace with poles on a specific circle and the nonpositive real axis segments for a proportional damping system. Finally, three examples are given to illustrate the property.
Issue Section:
Technical Briefs
1.
Rosenbrock, H. H., 1970, State-Space and Multivariable Theory, Wiley-Interscience, New York.
2.
Chen, C. T., 1984, Linear System Theory and Design, Oxford University Press, Inc., New York.
3.
Miu
, D. K.
, 1991
, “Physical Interpretation of Transfer Function Zeros for Simple Control Systems With Mechanical Flexibilities
,” ASME J. Dyn. Syst., Meas., Control
, 113
, pp. 419
–424
.4.
Miu
, D. K.
, and Yang
, B.
, 1994
, “On Transfer Function Zeros of General Collocated Control Systems With Mechanical Flexibilities
,” ASME J. Dyn. Syst., Meas., Control
, 116
, pp. 151
–154
.5.
Lin
, J. L.
, and Juang
, J. N.
, 1995
, “Sufficient Conditions for Minimum-Phase Second-Order Linear Systems
,” J. Vib. Control
, 1
, pp. 183
–199
.6.
Lin
, J. L.
, 1999
, “On Transmission Zeros of Mass-Dashpot-Spring Systems
,” ASME J. Dyn. Syst., Meas., Control
, 121
, pp. 179
–183
.7.
Lin
, J. L.
, Chen
, S. J.
, and Juang
, J. N.
, 1999
, “Minimum-Phase Robustness for Second-Order Linear Systems
,” J. Guid., Control Dyn.
, 22
, pp. 229
–234
.8.
Chen
, S. J.
, Lin
, J. L.
, and Chan
, K. C.
, 2002
, “Minimum Phase Robustness for Uncertain State-Space Systems
,” Int. J. Sys. Sci.
, 33
, pp. 1179
–1186
.9.
Qiu, L., and Davison, E. J., 1989, “The Stability Robustness of Generalized Eigenvalues,” IEEE Conference on Decision and Control, Tampa, Florida, pp. 1902–1907.
10.
Fong
, I. K.
, Su
, J. H.
, and Tseng
, C. L.
, 1993
, “Robustness Analysis of the Minimum Phase Property for Systems With Structured Uncertainties
,” Journal of Control Systems and Technology
, 1
, pp. 75
–82
.11.
Jensen
, P. S.
, 1976
, “Stiffly Stable Methods for Undamped Second Order Equations of Motion
,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
, 13
, pp. 549
–563
.12.
Park
, K. C.
, 1977
, “Practical Aspects of Numerical Time Integration
,” Comp. Struct.
, 7
, pp. 343
–353
.13.
Horn, R. A., and Johnson, C. R., 1990, Matrix Analysis, Cambridge University Press, New York.
Copyright © 2004
by ASME
You do not currently have access to this content.