In this paper, it is shown that some classic longitudinal impact problems can be solved satisfactorily with time delayed systems. As an example, a sphere colliding with a fixed rod with finite length is discussed in detail. Since it takes a finite time for a wave propagating from one position to another position, the longitudinal impact wave is naturally modeled by a time delay system. Numerical simulation shows some interesting phenomena and experimental results have validated the model with time delay. It is shown that for the computation of Poisson’s coefficient of restitution in multibody dynamics, the decomposition of the contact into the compression phase and the expansion phase must either be specified by whether the contact force increases or decrease or by whether the relative displacement increases or decreases. In the first case, the coefficient of restitution determined from the time history of the contact force could be greater than one. In the other case, the duration of contact determined from the relative displacement of the colliding bodies may be wrong as discussed in the paper.

1.
Szabo´, I., 1977, Geschichte der mechanischen Prinzipien und ihrer Wichtigsten Anwendungen, Birkha¨user, Basel.
2.
St. Venant
,
B. D.
, and
Flamant
,
M.
,
1883
, “
Re´sistance vive ou dynamique des solids. Repre´sentation graphique des lois du choc longitudinal
,”
C. R. Hebd. Seances Acad. Sci.
,
97
, pp.
127
353
.
3.
Boussinesq, J., 1885, Applications des Potentiels a` l’E´tude de l’E´quilibre et du Mouvement des Solides E´lastiques, Gauthier–Villars, Paris.
4.
Donnell
,
L. H.
,
1930
, “
Longitudinal Wave Transmission and Impact
,”
Trans. ASME
,
52
, pp.
153
167
.
5.
Goldsmith, W., 1960, Impact: The Theory and Physical Behaviour of Colliding Solids, Edward Arnold Ltd., London.
6.
Timoshenko, S. P., and Goodier, J. N., 1970, Theory of Elasticity, McGraw–Hill.
7.
Shi
,
P.
,
1997
, “
Simulation of Impact Involving an Elastic Rod
,”
Comput. Methods Appl. Mech. Eng.
,
151
, pp.
497
499
.
8.
Xing
,
Y. F.
, and
Zhu
,
D. C.
,
1997
, “
Analytical Solutions of Impact Problems of Rod Structures With Springs
,”
Comput. Methods Appl. Mech. Eng.
,
160
, pp.
315
323
.
9.
Hu
,
B.
, and
Eberhard
,
P.
,
2001
, “
Symbolic Computation of Longitudinal Impact Waves
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
4805
4815
.
10.
Hu
,
B.
,
Eberhard
,
P.
, and
Schiehlen
,
W.
,
2001
, “
Symbolical Impact Analysis for a Falling Conical Rod Against the Rigid Ground
,”
J. Sound Vib.
,
240
, pp.
41
57
.
11.
Al-Mousawi
,
M. M.
,
1986
, “
On Experimental Studies of Longitudinal and Flexural Wave Propagations: An Annotated Bibliography
,”
Appl. Mech. Rev.
,
39
, pp.
853
864
.
12.
Crook
,
A. W.
,
1952
, “
A Study of Some Impacts Between Metal Bodies by a Piezoeletric Method
,”
Proc. R. Soc. London, Ser. A
,
212
, pp.
377
390
.
13.
Ripperger, E. A., 1953, “The Propagation of Pulses in Cylindrical Bars: An Experimental Study,” Proceedings of the First Midwestern Conference on Solid Mechanics, Urbana IL, pp. 29–39.
14.
Cunningham, D. M., and Goldsmith, W., 1958, “Short Impulses Produced by Longitudinal Impact,” Proceedings of the Society for Experimental Stress Analysis, 16, pp. 153–165.
15.
Barton, C. S., Volterra, E., and Citron, S. J., 1958, “On Elastic Impacts of Spheres on Long Rods,” Proceedings of the 3rd US National Congress on Applied Mechanics, pp. 89–94.
16.
Ramamurti
,
V.
, and
Ramanamurti
,
P. V.
,
1977
, “
Impact on Short Length Bars
,”
J. Sound Vib.
,
53
, pp.
529
543
.
17.
Maekawa
,
I.
,
Tanabe
,
Y.
, and
Suzuki
,
M.
,
1988
, “
Impact Stress in a Finite Rod
,”
JSME Int. J., Ser. I
,
31
, pp.
554
560
.
18.
Feroz, K. T., 1997, “Impact Dynamics of Beams and Panels,” dissertation, University of Manchester, School of Engineering, Manchester.
19.
Hu, B., and Eberhard, P., 1999, “Experimental and Theoretical Investigation of a Rigid Body Striking an Elastic Rod,” Report No. IB-32, Institute B of Mechanics, University of Stuttgart, Stuttgart.
20.
Hu, B., Eberhard, P., and Schiehlen, W., “Comparison of Analytical and Experimental Results for Longitudinal Impacts on Elastic Rods,” J. Vibration and Control (to be published).
21.
Voigt
,
W.
,
1883
, “
Die Theorie des longitudinalen Stosses zylindrischer Sta¨be
,”
An. Phy. und Chemie, Series 6
,
19
, pp.
44
65
.
22.
Stronge, W. J., 2000, Impact Mechanics, Cambridge University Press, Cambridge.
23.
Schiehlen, W., Hu, B., and Eberhard, P., 2002, “Longitudinal Waves in Elastic Rods With Discontinuous Cross Sections,” in Proceedings of the 3rd Contact Mechanics International Symposium, Kluwer Academic Publishers, Dordrecht, pp. 117–124.
24.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, New York.
25.
Shampine
,
L.
, and
Reichelt
,
M.
,
1997
, “
The Matlab ODE Suite
,”
SIAM J. Sci. Comput.
,
18
, pp.
1
22
.
You do not currently have access to this content.