This paper sets forth two approaches for a combined controller-observer design procedure for a class of uncertain time delay systems. The first procedure uses a delay-independent LMI (linear matrix inequality) formulation that sets forth sufficient conditions for the existence of appropriate feedback and observer matrices that guarantee asymptotic stability of the system-error dynamic combination. The second procedure generates a similar delay-dependent LMI. Standard toolboxes can be used to generate solutions to the LMIs when solutions exist. The observer-control design techniques are applied to an internal combustion (IC) engine idle speed control problem; simulation results demonstrate the effectiveness of the proposed techniques.

1.
Fiagbedzi
,
Y. A.
, and
Pearson
,
A. E.
,
1985
, “
Feedback Stabilization of Autonomous Time Lag Systems
,”
IEEE Trans. Autom. Control
,
31
, pp.
847
855
.
2.
Cao
,
Y. Y.
, and
Sun
,
Y. X.
,
1998
, “
Robust Stabilization of Uncertain Systems With Time-Varying Multistate Delay
,”
IEEE Trans. Autom. Control
,
43
, pp.
1484
1488
.
3.
de Souza
,
C. E.
, and
Li
,
X.
,
1999
, “
Delay-Dependent Robust H Control of Uncertain Linear State-Delayed Systems
,”
Automatica
,
35
, pp.
1313
1321
.
4.
Li, X., and DeCarlo, R. A., 2001, “Memoryless Sliding Mode Control of Uncertain Time-Delay Systems,” American Control Conference, pp. 4344–4350.
5.
Li
,
X.
, and
de Souza
,
C. E.
,
1997
, “
Criteria for Robust Stability and Stabilization of Uncertain Linear Systems With State Delay
,”
Automatica
,
33
, pp.
1657
1662
.
6.
Bhat
,
K. P. M.
, and
Koivo
,
H. N.
,
1976
, “
An Observer Theory for Time-Delay Systems
,”
IEEE Trans. Autom. Control
,
21
, pp.
266
269
.
7.
Salamon
,
D.
,
1980
, “
Observers and Duality Between Observation and State Feedback for Time Delay Systems
,”
IEEE Trans. Autom. Control
,
25
, pp.
1187
1192
.
8.
Watanabe
,
K.
, and
Ouchi
,
T.
,
1985
, “
An Observer of Systems With Delays in State Variables
,”
Int. J. Control
,
41
, pp.
217
229
.
9.
Fiagbedzi
,
Y. A.
, and
Pearson
,
A. E.
,
1990
, “
Exponential State Observer for Time-Lag Systems
,”
Int. J. Control
,
51
, pp.
189
204
.
10.
Pearson
,
A. E.
, and
Fiagbedzi
,
Y. A.
,
1989
, “
An Observer for Time Lag Systems
,”
IEEE Trans. Autom. Control
,
13
, pp.
775
777
.
11.
Trinh
,
H.
,
1999
, “
Linear Functional State Observer for Time-Delay System
,”
Int. J. Control
,
72
, pp.
1642
1658
.
12.
Pila
,
A. W.
,
Shaked
,
U.
, and
de Souza
,
C. E.
,
1999
, “
H Filtering for Continuous-Time Linear Systems With Delay
,”
IEEE Trans. Autom. Control
,
44
, pp.
1412
1417
.
13.
Darouch
,
M.
,
2001
, “
Linear Functional Observers for Systems With Delays in State Variables
,”
IEEE Trans. Autom. Control
,
46
, pp.
491
496
.
14.
Li, X., and de Souza, C. E., 1997, “Output Feedback Stabilization of Linear Time-Delay Systems,” Proc. European Control Conf., July.
15.
Wang
,
Z.
,
Huang
,
B.
, and
Unbehauen
,
H.
,
2001
, “
Robust H Observer Design of Linear Time-Delay Systems With Parametric Uncertainty
,”
Syst. Control Lett.
,
42
, pp.
303
312
.
16.
Li, X., and DeCarlo, R. A., 2002, “Robust Controller and Observer Design for Time-Delay Systems,” American Control Conference, pp. 2210–2215.
17.
Petersen
,
I. R.
,
1987
, “
A Stabilization Algorithm for a Class of Uncertain Linear Systems
,”
Syst. Control Lett.
,
8
, pp.
351
357
.
18.
Wang
,
Y.
,
Xie
,
L.
, and
de Souza
,
C. E.
,
1992
, “
Roust Control of a Class of Uncertain Nonlinear Systems
,”
Syst. Control Lett.
,
19
, pp.
139
149
.
19.
Boyd, S. P., El Ghaoui, L., Feron, E., and Balakrishnan, V., 1994, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia.
20.
Niculescu, S. I., 2001, “Delay Effects on Stability: A Robust Control Approach,” in Lecture Notes in Control and Information Sciences, Vol. 269, Springer-Verlag, London.
21.
Spong
,
M. W.
, and
Tarn
,
T. J.
,
1981
, “
On the Spectral Controllability of Delay-Differential Equations
,”
IEEE Trans. Autom. Control
,
26
, pp.
527
528
.
22.
Hale, J. K., and Lunel, S. M. V., 1993, Introduction to Functional Differential Equations, Springer-Verlag, New York.
23.
Hrovat, D., and Sun, J., 1996, “Models and Control Methodologies for IC Engine Idle Speed Control Design,” Proc. 13th IFAC World Congress, pp. 243–248.
24.
Yurkovich, S., and Simpson, M., 1997, “Comparative Analysis for Idle Speed Control: A Crank-Angle Domain Viewpoint,” American Control Conference, pp. 278–283.
25.
Barmish
,
B. R.
, and
Galimidi
,
A. R.
,
1986
, “
Robustness of Luenberger Observers: Linear Systems Stabilized Via Non-Linear Control
,”
Automatica
,
22
, pp.
413
423
.
You do not currently have access to this content.