This paper sets forth two approaches for a combined controller-observer design procedure for a class of uncertain time delay systems. The first procedure uses a delay-independent LMI (linear matrix inequality) formulation that sets forth sufficient conditions for the existence of appropriate feedback and observer matrices that guarantee asymptotic stability of the system-error dynamic combination. The second procedure generates a similar delay-dependent LMI. Standard toolboxes can be used to generate solutions to the LMIs when solutions exist. The observer-control design techniques are applied to an internal combustion (IC) engine idle speed control problem; simulation results demonstrate the effectiveness of the proposed techniques.
Keywords:
control system synthesis,
delay systems,
velocity control,
uncertain systems,
time-varying systems,
observers,
internal combustion engines,
linear matrix inequalities,
feedback,
asymptotic stability
Topics:
Control equipment,
Delays,
Design,
Engines,
Feedback,
Time delay systems,
Stability,
Uncertainty
1.
Fiagbedzi
, Y. A.
, and Pearson
, A. E.
, 1985
, “Feedback Stabilization of Autonomous Time Lag Systems
,” IEEE Trans. Autom. Control
, 31
, pp. 847
–855
.2.
Cao
, Y. Y.
, and Sun
, Y. X.
, 1998
, “Robust Stabilization of Uncertain Systems With Time-Varying Multistate Delay
,” IEEE Trans. Autom. Control
, 43
, pp. 1484
–1488
.3.
de Souza
, C. E.
, and Li
, X.
, 1999
, “Delay-Dependent Robust H∞ Control of Uncertain Linear State-Delayed Systems
,” Automatica
, 35
, pp. 1313
–1321
.4.
Li, X., and DeCarlo, R. A., 2001, “Memoryless Sliding Mode Control of Uncertain Time-Delay Systems,” American Control Conference, pp. 4344–4350.
5.
Li
, X.
, and de Souza
, C. E.
, 1997
, “Criteria for Robust Stability and Stabilization of Uncertain Linear Systems With State Delay
,” Automatica
, 33
, pp. 1657
–1662
.6.
Bhat
, K. P. M.
, and Koivo
, H. N.
, 1976
, “An Observer Theory for Time-Delay Systems
,” IEEE Trans. Autom. Control
, 21
, pp. 266
–269
.7.
Salamon
, D.
, 1980
, “Observers and Duality Between Observation and State Feedback for Time Delay Systems
,” IEEE Trans. Autom. Control
, 25
, pp. 1187
–1192
.8.
Watanabe
, K.
, and Ouchi
, T.
, 1985
, “An Observer of Systems With Delays in State Variables
,” Int. J. Control
, 41
, pp. 217
–229
.9.
Fiagbedzi
, Y. A.
, and Pearson
, A. E.
, 1990
, “Exponential State Observer for Time-Lag Systems
,” Int. J. Control
, 51
, pp. 189
–204
.10.
Pearson
, A. E.
, and Fiagbedzi
, Y. A.
, 1989
, “An Observer for Time Lag Systems
,” IEEE Trans. Autom. Control
, 13
, pp. 775
–777
.11.
Trinh
, H.
, 1999
, “Linear Functional State Observer for Time-Delay System
,” Int. J. Control
, 72
, pp. 1642
–1658
.12.
Pila
, A. W.
, Shaked
, U.
, and de Souza
, C. E.
, 1999
, “H∞ Filtering for Continuous-Time Linear Systems With Delay
,” IEEE Trans. Autom. Control
, 44
, pp. 1412
–1417
.13.
Darouch
, M.
, 2001
, “Linear Functional Observers for Systems With Delays in State Variables
,” IEEE Trans. Autom. Control
, 46
, pp. 491
–496
.14.
Li, X., and de Souza, C. E., 1997, “Output Feedback Stabilization of Linear Time-Delay Systems,” Proc. European Control Conf., July.
15.
Wang
, Z.
, Huang
, B.
, and Unbehauen
, H.
, 2001
, “Robust H∞ Observer Design of Linear Time-Delay Systems With Parametric Uncertainty
,” Syst. Control Lett.
, 42
, pp. 303
–312
.16.
Li, X., and DeCarlo, R. A., 2002, “Robust Controller and Observer Design for Time-Delay Systems,” American Control Conference, pp. 2210–2215.
17.
Petersen
, I. R.
, 1987
, “A Stabilization Algorithm for a Class of Uncertain Linear Systems
,” Syst. Control Lett.
, 8
, pp. 351
–357
.18.
Wang
, Y.
, Xie
, L.
, and de Souza
, C. E.
, 1992
, “Roust Control of a Class of Uncertain Nonlinear Systems
,” Syst. Control Lett.
, 19
, pp. 139
–149
.19.
Boyd, S. P., El Ghaoui, L., Feron, E., and Balakrishnan, V., 1994, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia.
20.
Niculescu, S. I., 2001, “Delay Effects on Stability: A Robust Control Approach,” in Lecture Notes in Control and Information Sciences, Vol. 269, Springer-Verlag, London.
21.
Spong
, M. W.
, and Tarn
, T. J.
, 1981
, “On the Spectral Controllability of Delay-Differential Equations
,” IEEE Trans. Autom. Control
, 26
, pp. 527
–528
.22.
Hale, J. K., and Lunel, S. M. V., 1993, Introduction to Functional Differential Equations, Springer-Verlag, New York.
23.
Hrovat, D., and Sun, J., 1996, “Models and Control Methodologies for IC Engine Idle Speed Control Design,” Proc. 13th IFAC World Congress, pp. 243–248.
24.
Yurkovich, S., and Simpson, M., 1997, “Comparative Analysis for Idle Speed Control: A Crank-Angle Domain Viewpoint,” American Control Conference, pp. 278–283.
25.
Barmish
, B. R.
, and Galimidi
, A. R.
, 1986
, “Robustness of Luenberger Observers: Linear Systems Stabilized Via Non-Linear Control
,” Automatica
, 22
, pp. 413
–423
.Copyright © 2004
by ASME
You do not currently have access to this content.