In this paper we present a control method and a high accuracy solution technique in solving the linear quadratic Gaussian problems for nonstandard singularly perturbed discrete time systems. The methodology that exists in the literature for the solution of the standard singularly perturbed discrete time linear quadratic Gaussian optimal control problem cannot be extended to the corresponding nonstandard counterpart. The solution of the linear quadratic Gaussian optimal control problem is obtained by solving the pure-slow and pure-fast reduced-order continuous-time algebraic Riccati equations and by implementing the pure-slow and pure-fast reduced-order Kalman filters. In order to show the effectiveness of the proposed method, we present the numerical result for a one-link flexible robot arm.
Skip Nav Destination
Article navigation
December 2004
Article
LQG Control for Nonstandard Singularly Perturbed Discrete-Time Systems
Beom-Soo Kim,
Beom-Soo Kim
School of Electrical Engineering, Korea University, Korea
Search for other works by this author on:
Young-Joong Kim,
Young-Joong Kim
School of Electrical Engineering, Korea University, Korea
Search for other works by this author on:
Myo-Taeg Lim
Myo-Taeg Lim
Search for other works by this author on:
Beom-Soo Kim
School of Electrical Engineering, Korea University, Korea
Young-Joong Kim
School of Electrical Engineering, Korea University, Korea
Myo-Taeg Lim
Contributed by the Dynamic Systems, Measurement, and Control Division of THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS publication in the ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received by the ASME Dynamic Systems and Control Division January 14, 2003; final revision, December 8, 2003. Review conducted by: S. Devasia.
J. Dyn. Sys., Meas., Control. Dec 2004, 126(4): 860-864 (5 pages)
Published Online: March 11, 2005
Article history
Received:
January 14, 2003
Revised:
December 8, 2003
Online:
March 11, 2005
Citation
Kim , B., Kim , Y., and Lim, M. (March 11, 2005). "LQG Control for Nonstandard Singularly Perturbed Discrete-Time Systems ." ASME. J. Dyn. Sys., Meas., Control. December 2004; 126(4): 860–864. https://doi.org/10.1115/1.1850537
Download citation file:
Get Email Alerts
Fault detection of automotive engine system based on Canonical Variate Analysis combined with Bhattacharyya Distance
J. Dyn. Sys., Meas., Control
Multi Combustor Turbine Engine Acceleration Process Control Law Design
J. Dyn. Sys., Meas., Control (July 2025)
Related Articles
On the Guaranteed Nonsingularity of a Class of Banded Matrices for Optimal Control Generation
J. Dyn. Sys., Meas., Control (December,2003)
Quadratic Optimality of the Zero-Phase Repetitive Control
J. Dyn. Sys., Meas., Control (September,2001)
H ∞ Preview Control for Discrete-Time Systems
J. Dyn. Sys., Meas., Control (March,2001)
Model Reduction of Large-Scale Discrete Plants With Specified Frequency Domain Balanced Structure
J. Dyn. Sys., Meas., Control (September,2005)
Related Proceedings Papers
Related Chapters
QP Based Encoder Feedback Control
Robot Manipulator Redundancy Resolution
Image Smoothing Based on Game of Life
International Conference on Advanced Computer Theory and Engineering (ICACTE 2009)
PSO Based Flat Control of a Single Link Flexible Manipulator
International Conference on Advanced Computer Theory and Engineering, 5th (ICACTE 2012)