Abstract
The design of high-gain observers using the observability canonical form is reviewed. Up to the present, gradients of Lie derivatives required by the design algorithms have been computed symbolically. A symbolic computation of the observer gain yields quite often extremely large expressions, even for systems of moderate dimension and complexity. We show how automatic differentiation may be used to compute the observer gain.
Issue Section:
Technical Briefs
1.
Nijmeijer
, H.
, and Fossen
, T. I.
, eds., 1999, New Directions in Nonlinear Observer Design
, Vol. 244
of Lecture Notes in Control and Information Science
, Springer
, London.2.
Nicosia
, S.
, and Tornambé
, A.
, 1989, “High-Gain Observers in the State and Parameter Estimation of Robots Having Elastic Joints
,” Syst. Control Lett.
0167-6911, 13
, pp. 331
–337
.3.
Rajamani
, R.
, 1998, “Observers for Lipschitz Nonlinear Systems
,” IEEE Trans. Autom. Control
0018-9286, 43
(3
), pp. 397
–401
.4.
Gauthier
, J. P.
, Hammouri
, H.
, and Othman
, S.
, 1992, “A Simple Observer for Nonlinear Systems: Application to Bioreactors
,” IEEE Trans. Autom. Control
0018-9286, 37
(6
), pp. 875
–880
.5.
Ciccarella
, G.
, Mora
, M. D.
, and Germani
, A.
, 1993, “A Luenberger-Like Observer for Nonlinear Systems
,” Int. J. Control
0020-7179, 57
(3
), pp. 537
–556
.6.
Dalla
More M.
, , Germani
, A.
, and Manes
, C.
, 2000, “Design of State Observers From a Drift-Observability Property
,” IEEE Trans. Autom. Control
0018-9286, 45
(8
), pp. 1536
–1540
.7.
Birk
, J.
, 1992, Rechnergestützte Analyse und Synthese nichtlinearer Beobachtungsaufgaben
, VDI-Verlag
, Düsseldorf, VDI-Fortschrittsberichte, Reihe 8
, Vol. 294
.8.
Jo
, N. H.
, and Seo
, J. H.
, 2000, “Input Output Linearization Approach to State Observer Design for Nonlinear System
,” IEEE Trans. Autom. Control
0018-9286, 45
(12
), pp. 2388
–2393
.9.
Griewank
, A.
, 2000, Evaluating Derivatives—Principles and Techniques of Algorithmic Differentiation
, SIAM
, Philadelphia. Frontiers in Applied Mathematics
, Vol. 19
.10.
de Jager
, B.
, 1995, “The Use of Symbolic Computation in Nonlinear Control: Is it Viable?
” IEEE Trans. Autom. Control
0018-9286, 40
(1
), pp. 84
–89
.11.
Kwatny
, H. G.
, and Blankenship
, G. L.
, 2000, Nonlinear Control and Analytical Mechanics: A Computational Approach
, Birkhäuser
, Boston.12.
Bendtsen
, C.
, and Stauning
, O.
, 1997, “TADIFF, a Flexible C++ Package for Automatic Differentiation
,” Technical Report IMM-REP-1997-07, TU of Denmark, Dept. of Mathematical Modelling, Lungby.13.
Griewank
, A.
, Juedes
, D.
, and Utke
, J.
, 1996, “ADOL-C: A Package for Automatic Differentiation of Algorithms Written in C∕C++
,” ACM Trans. Math. Softw.
0098-3500, 22
, pp. 131
–167
.14.
Christianson
, B.
, 1992, “Reverse Accumulation and Accurate Rounding Error Estimates for Taylor Series
,” Optim. Methods Softw.
, 1
, pp. 81
–94
.15.
Griewank
, A.
, 1995, “ODE Solving via Automatic Differentiation and Rational Prediction
,” Numerical Analysis 1995
, D. F.
Griffiths
and G. A.
Watson
, eds., Addison-Wesley
, Longman, Pitman Research Notes in Mathematics Series
, Vol. 344
, pp. 37
–56
.16.
Röbenack
, K.
, 2003, Beobachterentwurf für nichtlineare Zustandssysteme mit Hilfe des Automatischen Differenzierens
, Shaker-Verlag
, Aachen.Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.