Abstract

The design of high-gain observers using the observability canonical form is reviewed. Up to the present, gradients of Lie derivatives required by the design algorithms have been computed symbolically. A symbolic computation of the observer gain yields quite often extremely large expressions, even for systems of moderate dimension and complexity. We show how automatic differentiation may be used to compute the observer gain.

1.
Nijmeijer
,
H.
, and
Fossen
,
T. I.
, eds., 1999,
New Directions in Nonlinear Observer Design
, Vol.
244
of
Lecture Notes in Control and Information Science
,
Springer
, London.
2.
Nicosia
,
S.
, and
Tornambé
,
A.
, 1989, “
High-Gain Observers in the State and Parameter Estimation of Robots Having Elastic Joints
,”
Syst. Control Lett.
0167-6911,
13
, pp.
331
337
.
3.
Rajamani
,
R.
, 1998, “
Observers for Lipschitz Nonlinear Systems
,”
IEEE Trans. Autom. Control
0018-9286,
43
(
3
), pp.
397
401
.
4.
Gauthier
,
J. P.
,
Hammouri
,
H.
, and
Othman
,
S.
, 1992, “
A Simple Observer for Nonlinear Systems: Application to Bioreactors
,”
IEEE Trans. Autom. Control
0018-9286,
37
(
6
), pp.
875
880
.
5.
Ciccarella
,
G.
,
Mora
,
M. D.
, and
Germani
,
A.
, 1993, “
A Luenberger-Like Observer for Nonlinear Systems
,”
Int. J. Control
0020-7179,
57
(
3
), pp.
537
556
.
6.
Dalla
More M.
,
,
Germani
,
A.
, and
Manes
,
C.
, 2000, “
Design of State Observers From a Drift-Observability Property
,”
IEEE Trans. Autom. Control
0018-9286,
45
(
8
), pp.
1536
1540
.
7.
Birk
,
J.
, 1992,
Rechnergestützte Analyse und Synthese nichtlinearer Beobachtungsaufgaben
,
VDI-Verlag
, Düsseldorf,
VDI-Fortschrittsberichte, Reihe 8
, Vol.
294
.
8.
Jo
,
N. H.
, and
Seo
,
J. H.
, 2000, “
Input Output Linearization Approach to State Observer Design for Nonlinear System
,”
IEEE Trans. Autom. Control
0018-9286,
45
(
12
), pp.
2388
2393
.
9.
Griewank
,
A.
, 2000,
Evaluating Derivatives—Principles and Techniques of Algorithmic Differentiation
,
SIAM
, Philadelphia.
Frontiers in Applied Mathematics
, Vol.
19
.
10.
de Jager
,
B.
, 1995, “
The Use of Symbolic Computation in Nonlinear Control: Is it Viable?
IEEE Trans. Autom. Control
0018-9286,
40
(
1
), pp.
84
89
.
11.
Kwatny
,
H. G.
, and
Blankenship
,
G. L.
, 2000,
Nonlinear Control and Analytical Mechanics: A Computational Approach
,
Birkhäuser
, Boston.
12.
Bendtsen
,
C.
, and
Stauning
,
O.
, 1997, “
TADIFF, a Flexible C++ Package for Automatic Differentiation
,” Technical Report IMM-REP-1997-07, TU of Denmark, Dept. of Mathematical Modelling, Lungby.
13.
Griewank
,
A.
,
Juedes
,
D.
, and
Utke
,
J.
, 1996, “
ADOL-C: A Package for Automatic Differentiation of Algorithms Written in C∕C++
,”
ACM Trans. Math. Softw.
0098-3500,
22
, pp.
131
167
.
14.
Christianson
,
B.
, 1992, “
Reverse Accumulation and Accurate Rounding Error Estimates for Taylor Series
,”
Optim. Methods Softw.
,
1
, pp.
81
94
.
15.
Griewank
,
A.
, 1995, “
ODE Solving via Automatic Differentiation and Rational Prediction
,”
Numerical Analysis 1995
,
D. F.
Griffiths
and
G. A.
Watson
, eds.,
Addison-Wesley
, Longman,
Pitman Research Notes in Mathematics Series
, Vol.
344
, pp.
37
56
.
16.
Röbenack
,
K.
, 2003,
Beobachterentwurf für nichtlineare Zustandssysteme mit Hilfe des Automatischen Differenzierens
,
Shaker-Verlag
, Aachen.
You do not currently have access to this content.