We present an algorithm to characterize the set S={xRl:f(x)>0}=f1(]0,[m) in the framework of set inversion using interval analysis. The proposed algorithm improves on the algorithm of Jaulin et al. (Jaulin, L., Kieffer, M., Didrit, O., and Walter, E., 2001, Applied Interval Analysis, Springer, London). The improvements exploit the powerful tool of monotonicity. We test and compare the performance of the proposed algorithm with that of Jaulin et al. in characterizing the domain of robust stability for the speed control loop of a jet engine. The results of testing show that the proposed algorithm encloses S more accurately, meaning that it gives a larger region of compensator parameter values for which the system stability is guaranteed and a smaller region of the same for which the system stability is indeterminate.

1.
Ackermann
,
J.
, 1975,
Robust Control: Systems With Uncertain Physical Parameters
,
Springer-Verlag
, Berlin.
2.
Jaulin
,
L.
,
Kieffer
,
M.
,
Didrit
,
O.
, and
Walter
,
E.
, 2001,
Applied Interval Analysis
,
Springer
, London.
3.
Ratschek
,
H.
, and
Rokne
,
J.
, 1988,
New Computer Methods for Global Optimization
,
Wiley
, New York.
4.
Moore
,
R. E.
, 1979,
Methods and Applications of Interval Analysis
.
SIAM
, Philadelphia.
5.
Walter
,
E.
, and
Jaulin
,
L.
, 1994, “
Guaranteed Characterization of Stability Domains Via Set Inversion
,”
IEEE Trans. Autom. Control
0018-9286,
39
(
4
) pp.
886
889
.
6.
Kcarfott
,
R. B.
, 1996,
Rigorous Global Search: Continuous Problems
,
Kluwer
, Dordrecht.
7.
Nataraj
,
P. S. V.
, and
Sheela
,
S.
, 2002, “
A New Subdivision Strategy for Range Computations
,”
Reliable Comput.
,
8
, pp.
1
10
.
8.
Nataraj
,
P. S. V.
, and
Srivastava
,
S.
, 1999, “
Synthesis of Robustly Stabilizing General Order Compensators for Interval Plants Using Interval Analysis
,”
Reliable Comput.
9.
Bhattacharyya
,
S. P.
,
Chapellat
,
H.
, and
Keel
,
L. H.
, 1995,
Robust Control—The Parametric Approach
,
Prentice Hall
, New York.
10.
Shankar
,
V.
,
Sampathkumaran
,
T. K.
, and
Sundarajan
,
V.
, 2001, “
The Kaveri Technology
,”
Proc. 15th Int. Symp. Air Breathing Engines
,
Bangalore
, India.
11.
Sanghi
,
V.
, and
Lakshman
,
B. K.
, 2001, “
Aerothermal Model for Real Time Digital Simulation of a Mixed Flow Turbofan Engine
,”
J. Propul. Power
0748-4658,
17
, pp.
629
635
.
12.
Sun Microsystems
, Palo Alto, CA, USA 2001,
Forte FORTRAN 95 User Manual
.
You do not currently have access to this content.