This paper explains the possible occurrence of the “sticking and restarting phenomenon” observed with electropneumatic positioning systems. This is carried out from the notion of partial equilibrium, with the analysis of the model which incorporates two parallel phenomena which are used to generate a pressure force subjected to dry friction forces. Also, an experimental result has been studied in a particular pressure force plane which shows the origin of the problem more explicitly. The theoretical results give a necessary and sufficient condition for the restarting phenomenon not to occur and, if this condition is not validated, there is an estimation of the restarting time. Understanding this undesirable phenomenon will be the basis for further work which will attempt to find solutions to avoid its occurrence.

1.
Brun
,
X.
,
Thomasset
,
D.
, and
Bideaux
,
E.
,
2002
, “
Influence of the Process Design on the Control Strategy: Application in Electropneumatic Field
,”
Control Eng. Pract.
,
10
(
7
), pp.
727
735
.
2.
Harrold, D., 1999, “Select and Size Control Valves Properly to Save Money,” available on http://www.manufacturing.net/ctl/index.asp?layout=article&articleid=CA192621, Control Engineering.
3.
Armstrong-He´louvry
,
B.
,
Dupont
,
P.
, and
Canudas de Wit
,
C.
,
1994
, “
A Survey of Analysis Tools and Compensation Methods for the Control of Machines With Friction
,”
Automatica
,
30
, pp.
1083
1138
.
4.
Kimura
,
T.
,
Hara
,
S.
,
Fujita
,
T.
, and
Kagawa
,
T.
,
1997
, “
Feedback Linearization for Pneumatic Actuator Systems With Static Friction
,”
Control Eng. Pract.
,
5
(
10
), pp.
1385
1394
.
5.
Tafazoli
,
S.
,
1998
, “
Tracking Control of an Electrohydraulic Manipulator in the Presence of Friction
,”
IEEE Trans. Cont. Syst. Tech.
,
6
(
3
), pp.
401
411
.
6.
Kang
,
M. S.
,
1998
, “
Robust Digital Friction Compensation
,”
Control Eng. Pract.
,
6
(
3
), pp.
359
367
.
7.
Tokashiki Kishimoto, L. R., 1999, “Dynamic Characteristics of Pneumatic Cylinder Systems,” M. S. thesis, Tokyo Institute of Technology.
8.
Suzuki, A., and Tomizuka, M., 1991, “Design and Implementation of Digital Servo Controller for High Speed Machine Tools,” Proc. AACC, Boston, pp. 1246–1251.
9.
Cheng
,
C. C.
, and
Chen
,
C. Y.
,
1998
, “
A PID Approach to Suppressing Stick-Slip in the Positioning of Transmission Mechanisms
,”
Control Eng. Pract.
,
6
(
4
), pp.
359
367
.
10.
Hamiti
,
K.
,
Voda-Besanc¸on
,
A.
, and
Roux-Buisson
,
H.
,
1996
, “
Position Control of a Pneumatic Actuator Under the Influence of Stiction
,”
Control Eng. Pract.
,
4
(
8
), pp.
1079
1088
.
11.
Ming-Chang
,
S.
, and
Shy-I
,
T.
,
1995
, “
Identification and Position Control of a Servo Pneumatic Cylinder
,”
Control Eng. Pract.
,
3
(
9
), pp.
1285
1290
.
12.
Control Engineering Staff,
2003
, “
Servo Pneumatics Finding its Niche, Bit by Bit
,”
Control Eng. Euro.
,
4
(
1
), pp.
32
33
.
13.
Sesmat, S., and Scavarda, S., 1998, “Study of the Behavior of an Electropneumatic Positioning System Near the Equilibrium State,” Proc. First Int. Fluid. Kolloq. in Aachen, Aachen, Vol. 2, pp. 321–334.
14.
Brun, X., Sesmat, S., Scavarda, S., and Thomasset, D., 1999, “Simulation and Experimental Study of the Partial Equilibrium of an Electropneumatic Positioning System, Cause of the ‘Sticking and Restarting Phenomenon,’ ” Proc. 4th Japan Hydraulics and Pneumatics Society Int. Symp. on Fluid Power, Tokyo, Japan, 15–17, pp. 125–130.
15.
Edge
,
K. A.
,
1997
, “
The Control of Fluid Power Systems—Responding to the Challenge
,”
J. Syst. Control Eng.
,
211
(
12
), pp.
91
110
.
16.
Richard
,
E.
, and
Scavarda
,
S.
,
1996
, “
Comparison Between Linear and Nonlinear Control of an Eletropneumatic Servodrive
,”
ASME J. Dyn. Syst., Meas., Control
,
118
, pp.
245
252
.
17.
Shearer
,
J. L.
,
1956
, “
Study of Pneumatic Processes in the Continuous Control of Motion With Compressed Air
,”
Trans. ASME
,
78
, pp.
233
249
.
18.
Mc Cloy, D., 1968, “Discharge Characteristics of Servo Valve Orifices,” The 1968 Fluid Power International conference, Olympia, Paper 6, pp. 43–50.
19.
Tustin
,
A.
,
1947
, “
The Effect of Backlash and Speed-Dependent Friction on the Stability of Closed-Cycle Control Systems
,”
Jour. of the Institution of Electrical Engineers
,
94
(
2A
), pp.
143
151
.
20.
Dahl
,
P. R.
,
1968
, “
A Solid Friction Model
,”
TOR-158, The Aerospace Corporation, El Segundo, CA, pp. 3107–3118.
21.
Armstrong-He´louvry
,
B.
,
Dupont
,
P.
, and
Canudas de Wit
,
C.
,
1994
, “
A Survey of Analysis Tools and Compensation Methods for the Control of Machines With Friction
,”
Automatica
,
30
, pp.
1083
1138
.
22.
Canudas de Wit
,
C.
,
Olsson
,
H.
,
Astro¨m
,
K. J.
, and
Lischinsky
,
P.
,
1995
, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
,
40
(
3
), pp.
419
425
.
23.
Karnopp
,
D.
,
1985
, “
Computer Simulation of Stick-Slip Friction in Mechanical Dynamic Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
107
, pp.
100
103
.
1.
Stribeck
,
R.
,
1902
, “
Die Wesentlichen Eigenschaften der Gleit und Rollenlager—The Key Qualities of Sliding and Roller Bearings
,”
Zeitschrift des Vereines Seutscher Ingenieure
,
46
(
38
), pp.
1342
1348
;
2.
1902
46
(
39
), pp.
1432
1437
.
1.
Brun
,
X.
,
Belgharbi
,
M.
,
Sesmat
,
S.
,
Thomasset
,
D.
, and
Scavarda
,
S.
,
1999
, “
Control of an Electropneumatic Actuator, Comparison Between Some Linear and Nonlinear Control Laws
,”
J. Syst. Control Eng.
,
213
(
15
), pp.
387
406
.
2.
Johnson
,
C. T.
, and
Rolenz
,
R. D.
,
1992
, “
Experimental Identification of Friction and Its Compensation in Precise Position Controlled Mechanism
,”
IEEE Trans. Ind. Appl.
,
28
(
6
), pp.
1392
1398
.
3.
Canudas de Witt
,
C.
,
Astro¨m
,
K. J.
, and
Braun
,
K.
,
1987
, “
Adaptive Friction Compensation in dc-Motor Drive
,”
IEEE J. Rob. Autom.
,
3
(
6
), pp.
681
685
.
4.
Ray
,
R. L.
,
Ramasubramanian
,
A.
, and
Townsend
,
J.
,
2001
, “
Adaptive Friction Compensation Using Extended Kalman-Bucy Filter Friction Estimation
,”
Control Eng. Pract.
,
9
(
2
), pp.
169
179
.
5.
Cho
,
S. H.
, and
Edge
,
K. A.
,
2000
, “
Adaptive Sliding Mode Tracking Control of Hydraulic Servosystems With Unknown Nonlinear Friction and Modeling Error
,”
J. Syst. Control Eng.
,
214
(
14
), pp.
247
258
.
6.
Choi
,
S. H.
,
Lee
,
C. O.
, and
Cho
,
S. H.
,
2000
, “
Friction Compensation Control of an Electropneumatic Servovalve by Using an Evolutionary Algorithm
,”
J. Syst. Control Eng.
,
214
(
13
), pp.
173
184
.
You do not currently have access to this content.