We propose an algorithm to compute the spectral set of a polytope of polynomials. The proposed algorithm offers several key guarantees that are not available with existing techniques. It guarantees that the generated spectral set: (i) contains all the actual points, (ii) is computed to a prescribed accuracy, (iii) is computed reliably in face of all kinds of computational errors, and (iv) is computed in a finite number of algorithmic iterations. A further merit is that the computational complexity of the proposed algorithm is in contrast to for existing techniques, where is the degree of the polynomial. The algorithm is demonstrated on a few examples.
Issue Section:
Technical Briefs
1.
Bhattacharyya
, S. P.
, Chapellat
, H.
, and Keel
, L. H.
, 1995, Robust Control—The Parametric Approach
, Prentice-Hall
, Englewood Cliffs, NJ
.2.
Barmish
, B. R.
, and Tempo
, R.
, 1991, “On the Spectral Set for a Family of Polynomials
,” IEEE Trans. Autom. Control
0018-9286, 36
, pp. 111
–115
.3.
Cerone
, V.
, 1997, “A Fast Technique for the Generation of the Spectral Set of a Polytope of Polynomials
,” Automatica
0005-1098, 33
(2
), pp. 277
–280
.4.
Hwang
, C.
, and Chen
, J.-J.
, 1999, “Plotting Robust Root Loci for Linear Systems With Multilinearly Parametric Uncertainties
,” Int. J. Control
0020-7179, 72
(6
), pp. 501
–511
.5.
Yang
, S.-F.
, and Hwang
, C.
, 2001, “Generation of Robust Root Loci for Linear Systems With Parametric Uncertainties in an Ellipsoid
,” Int. J. Control
0020-7179, 74
(15
), 1483
–1491
.6.
Moore
, R. E.
, 1979, Methods and Applications of Interval Analysis
, SIAM
, Philadelphia
.7.
Moore
, R. E.
, 1966, Interval Analysis
, Prentice-Hall
, Englewood Cliffs, NJ
.8.
Klatte
, R.
, Kulisch
, U.
, Neaga
, M.
, Ratz
, D.
, and Ullrich
, Ch.
, 1993, PASCAL-XSC Language Reference With Examples
, Springer-Verlag
, Berlin
.9.
Nataraj
, P. S. V.
, and Sheela
, S.
, 2002, “A New Subdivision Strategy for Range Computations
,” Reliable Comput.
, 8
, pp. 1
–10
.10.
Cormen
, T. H.
, Leiserson
, C. E.
, and Rivest
, R. L.
, 2001, Introduction to Algorithms
, Prentice-Hall of India
, New Delhi
.11.
Henrici
, P.
, 1974, Applied and Computational Complex Analysis
, Wiley
, New York
, Vol. 1
.12.
Barve
, J. J.
, 2003, “Interval Methods for Analysis of Linear and Nonlinear Control Systems
,” Ph.D. thesis, IIT, Mumbai.13.
Rump
, S. M.
, 1999, “INTLAB—Interval Laboratory
,” Developments in Reliable Computing
, T.
Csendes
, ed. Kluwer
, Dordrecht
.14.
Ratschek
, H.
, 1985, “Inclusion Functions and Global Optimization
,” Math. Program.
0025-5610, 33
, pp. 300
–317
.15.
Alefeld
, G.
, and Herzberger
, J.
, 1983, Introduction to Interval Computations
, Academic Press
, New York
.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.