In this paper, we develop a new control method, termed adaptive synchronized (A-S) control, for improving tracking accuracy of a P-R-R type planar parallel manipulator with parametric uncertainty. The novelty of A-S control, a combination of synchronized control and adaptive control, is in the application of synchronized control to a single parallel manipulator so that tracking accuracy is improved during high-speed, high-acceleration tracking motions. Through treatment of each chain as a submanipulator; the P-R-R manipulator is thus modeled as a multi-robot system comprised of three submanipulators grasping a common payload. Considering the geometry of the platform, these submanipulators are kinematically constrained and move in a synchronous manner. To solve this synchronization control problem, a synchronization error is defined, which represents the coupling effects among the submanipulators. With the employment of this synchronization error, tracking accuracy of the platform is improved. Simultaneously, the estimated unknown parameters converge to their true values through the use of a bounded-gain-forgetting estimator. Experiments conducted on the P-R-R manipulator demonstrate the validity of the approach.

1.
Stauffer
,
R. N.
, 1984, “
Flight Simulation Facility Features Robot Position
,”
Robo. Today
,
6
(
3
), pp.
71
72
.
2.
Chen
,
N. X.
, and
Song
,
S.
, 1994, “
Direct Position Analysis of 4-6 Stewart Platforms
,”
ASME J. Mech. Des.
1050-0472,
116
, pp.
61
66
.
3.
Clavel
,
R.
, 1998, “
Delta, a Fast Robot With Parallel Geometry
,”
Proc. 18th Int. Symposium on Industrial Robots
,
Lausanne, Switzerland
, pp.
91
100
.
4.
Merlet
,
J. P.
, 2000,
Parallel Robots
,
Kluwer Academic
,
Dordrecht
, pp.
9
10
.
5.
Koren
,
Y.
, 1980, “
Cross-Coupled Biaxial Computer Control for Manufacturing Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
102
(
4
), pp.
265
272
.
6.
Feng
,
L.
,
Koren
,
Y.
, and
Borenstein
,
J.
, 1993, “
Cross-Coupling Motion Controller for Mobile Robots
,”
IEEE Control Syst. Mag.
0272-1708,
13
(
6
), pp.
35
43
.
7.
Borenstein
,
J.
, 1995, “
Control and Kinematic Design of Multi-Degree-of Freedom Mobile Robots With Compliant Linkage
,”
IEEE Trans. Rob. Autom.
1042-296X,
11
, pp.
21
35
.
8.
Sun
,
D.
, and
Mills
,
J. K.
, 2002, “
Adaptive Synchronized Control for Coordination of Multi-Robot Assembly Tasks
,”
IEEE Trans. Rob. Autom.
1042-296X,
18
(
4
), pp.
498
510
.
9.
Nijmeijer
,
H.
, and
Rodriguez-Angeles
,
A.
, 2004,
Synchronization of Mechanical Systems
,
World Scientific
,
Singapore
, Chap. 5.
10.
Sirouspour
,
M. R.
, and
Salcudean
,
S. E.
, 2001, “
Nonlinear Control of Hydraulic Robots
,”
IEEE Trans. Rob. Autom.
1042-296X,
17
(
2
), pp.
173
182
.
11.
Angeles
,
J.
, 1997,
Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms
,
Springer
,
New York
, Chap. 6.
12.
Kang
,
B.
,
Chu
,
J.
, and
Mills
,
K. J.
, 2001, “
Design of High Speed Planar Parallel Manipulator and Multiple Simultaneous Specification Control
,”
Proc. IEEE Conf. Robotics and Automation
, Vol.
3
, pp.
2723
2728
.
13.
Spong
,
M. W.
, and
Vidyasagar
,
M.
, 1989,
Robot Dynamics and Control
,
Wiley
,
New York
.
14.
Gosselin
,
C.
, and
Angeles
,
J.
, 1990, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
1042-296X,
6
(
3
), pp.
281
290
.
15.
Corless
,
M. J.
, and
Leitmann
,
G.
, 1981, “
Continuous State Feedback Guaranteeing Uniform Ultimate Boundedness for Uncertain Dynamic Systems
,”
IEEE Trans. Autom. Control
0018-9286,
AC-26
(
5
), pp.
1139
1144
.
16.
Han
,
C. Z.
,
Wang
,
Y. J.
, and
Wan
,
B. W.
, 1987,
Theory of Stochastic Systems
,
Xi’an Jiaotong University
,
Xi’an, P. R. China
, Chap. 5.
17.
Ren
,
L.
, 2005, “
Synchronized Trajectory Tracking Control for Parallel Robotic Manipulators
,” Ph.D. thesis, University of Toronto.
You do not currently have access to this content.