The precise control of a manipulator depends on its velocity as well as on its configuration and dynamic properties. This paper presents some observations that can serve as a useful tool for identifying nonlinear ear effects in a manipulator. The tool is based on equations of motion being expressed in terms of inertial quasi-velocities (IQVs). They are rates containing both kinematic and mechanical parameters of the system. The presented approach gives a further insight into the manipulator motion. An analytical example shows the proposed strategy.

1.
Sciavicco
,
L.
, and
Siciliano
,
B.
, 1996,
Modeling and Control of Robot Manipulators
,
McGraw-Hill
,
New York
.
2.
Slotine
,
J.-J.
, and
Li
,
W.
, 1991,
Applied Nonlinear Control
,
Prentice Hall
,
Englewood Cliffs, NJ
.
3.
Spong
,
M. W.
, and
Vidyasagar
,
M.
, 1989,
Robot Dynamics and Control
,
Wiley
,
New York
.
4.
Park
,
J. S.
, 1996, “
Motion Profile Planning of Repetitive Point-to-Point Control for Maximum Energy Conversion Efficiency Under Acceleration Conditions
,”
Mechatronics
0957-4158,
6
, pp.
649
663
.
5.
Tarn
,
T.-J.
,
Xi
,
N.
, and
Bejczy
,
A. K.
, 1996, “
Path-Based Approach to Integrated Planning and Control for Robotic Systems
,”
Automatica
0005-1098,
32
, pp.
1675
1687
.
6.
Athans
,
M.
, and
Falb
,
P. L.
, 1966,
Optimal Control: An Introduction to the Theory and its Applications
,
McGraw-Hill
,
New York
.
7.
Pons
,
J. L.
,
Ceres
,
R.
,
Jimenez
,
A. R.
,
Calderon
,
L.
, and
Martin
,
J. M.
, 1997, “
Nonlinear Performance Index (npi): A Tool for Manipulator Dynamics Improvement
,”
J. Intell. Robotic Syst.
0921-0296,
18
, pp.
277
287
.
8.
Hurtado
,
J. E.
, and
Sinclair
,
A. J.
, 2004, “
Hamel Coefficients for the Rotational Motion of an N-dimensional Rigid Body
,”
Proc. R. Soc. London, Ser. A
1364-5021,
460
(
2052
), pp.
3613
3630
.
9.
Jain
,
A.
, and
Rodriguez
,
G.
, 1995, “
Diagonalized Lagrangian Robot Dynamics
,”
IEEE Trans. Rob. Autom.
1042-296X,
11
, pp.
571
584
.
10.
Junkins
,
J. L.
, and
Schaub
,
H.
, 1997, “
An Instantaneous Eigenstructure Quasivelocity Formulation for Nonlinear Multibody Dynamics
,”
J. Astronaut. Sci.
0021-9142,
45
, pp.
279
295
.
11.
Loduha
,
T. A.
, and
Ravani
,
B.
, 1995, “
On First-Order Decoupling of Equations of Motion for Constrained Dynamical Systems
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
62
, pp.
216
222
.
12.
Herman
,
P.
, 2005, “
Sliding Mode Control of Manipulators Using First-Order Equations of Motion With Diagonal Mass Matrix
,”
J. Franklin Inst.
0016-0032,
342
, pp.
353
363
.
13.
Kwatny
,
H. G.
, and
Blankenship
,
G. L.
, 2000,
Nonlinear Control and Analytical Mechanics
,
Birkhäuser
,
Boston
.
14.
Koditschek
,
D.
, 1984, “
Natural Motion for Robot Arms
,”
Proc. of the 23rd IEEE Conference on Decision and Control
, pp.
733
735
.
15.
Koditschek
,
D.
, 1985, “
Robot Kinematics and Coordinate Transformations
,”
Proc. of the 24th IEEE Conference on Decision and Control
, pp.
1
4
.
You do not currently have access to this content.