This paper presents the design of a complete sensor fault detection, isolation, and accommodation (SFDIA) scheme for heavy-duty diesel engines without physical redundancy in the sensor capabilities. The analytical redundancy in the available measurements is exploited by two different banks of neural approximators that are used for the identification of the nonlinear input/output relationships of the engine system. The first set of approximators is used to evaluate the residual signals needed for fault isolation. The second set is used—following the failure detection and isolation—to provide a replacement for the signal originating from the faulty sensor. The SFDIA scheme is explained with details, and its performance is evaluated through a set of simulations in which failures are injected on measured signals. The experimental data from this study have been acquired using a test vehicle appositely instrumented to measure several engine parameters. The measurements were performed on a specific set of routes, which included a combination of highway and city driving patterns.

1.
Patton
,
R. J.
,
Frank
,
P. M.
, and
Clark
,
R. N.
, 1989,
Fault Diagnosis in Dynamic Systems, Theory and Applications
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
2.
Gertler
,
J.
, 1988, “
Survey of Model Based Fault Detection and Isolation in Complex Plants
,”
IEEE Control Syst. Mag.
0272-1708,
8
, pp.
3
11
.
3.
Chen
,
J.
, and
Patton
,
R. J.
, 1999,
Robust Model-Based Fault Diagnosis for Dynamic Systems
,
Kluwer Academic
,
London
.
4.
Krishnaswami
,
V.
,
Luh
,
G. C.
, and
Rizzoni
,
G.
, 1995, “
Nonlinear Parity Equation Residual Generation for Diagnosis of Automotive Engine Faults
,”
Control Eng. Pract.
0967-0661,
3
(
10
), pp.
1385
1392
.
5.
Trunov
,
A. B.
, and
Polycarpou
,
M.
, 2000, “
Automated Fault Diagnosis in Nonlinear Multivariable Systems Using a Learning Methodology
,”
IEEE Trans. Neural Netw.
1045-9227,
11
(
1
), pp.
91
101
.
6.
Bulsari
,
A.
,
Medvedev
,
A.
, and
Saxen
,
H.
, 1993, “
Sensor Fault Isolation in Dynamic Systems by a Neural Network Hierarchy
,”
Control Eng. Pract.
0967-0661,
1
(
5
), pp.
137
142
.
7.
Laukonen
,
E. G.
,
Passino
,
K. M.
,
Luh
,
G. C.
, and
Rizzoni
,
G.
, 1995, “
Fault Detection and Isolation for Experimental Internal Combustion Engine Via Fuzzy Identification
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
3
(
3
), pp.
347
355
.
8.
Campa
,
G.
,
Fravolini
,
M. L.
,
Napolitano
,
M. R.
,
Del Gobbo
,
D.
,
Seanor
,
B.
,
Gu
,
Y.
, and
Gururajan
,
S.
, 2002, “
On-Line Learning Neural Networks for Sensor Validation of a B777 Flying Model
,”
Int. J. Robust Nonlinear Control
1049-8923,
12
, pp.
987
1007
.
9.
Kim
,
Y.
,
Rizzoni
,
G.
, and
Utkin
,
V.
, 1998, “
Automotive Engine Diagnosis and Control Via Nonlinear Estimation
,”
IEEE Control Syst. Mag.
0272-1708,
18
, pp.
84
99
.
10.
Desantes
,
J. M.
,
López
,
J. J.
,
García
,
J. M.
, and
Hernández
,
L.
, 2002, “
Application of Neural Networks for Prediction and Optimization of Exhaust Emissions in a H. D. Diesel Engine
,” Paper No. SAE 2002–01–1144.
11.
Atkinson
,
C. M.
,
Long
,
T. W.
, and
Hanzevak
,
E. L.
, 2003, “
Virtual Sensing: A Neural Network Based Intelligent Performance and Emissions Prediction for On-Board Diagnostics and Engine Control
,” Paper No. SAE-980516, pp.
95
106
.
12.
Dong
,
D.
,
McAvoy
,
T. J.
, and
Chang
,
L. J.
, 1995, “
Emission Monitoring Using Multivariate Soft Sensors
,”
Proceedings of the American Control Conference
, Vol.
1
, Nos.
21–23
, pp.
761
765
.
13.
Qin
,
S. J.
,
Yue
,
H.
, and
Dunia
,
R.
, 1997, “
A Self-Validating Inferential Sensor for Emission Monitoring
,”
Proceedings of the 1997 American Control Conference
, Vol.
1
, Nos.
4–6
, pp.
473
477
.
14.
Gaura
,
E.
, and
Kraft
,
M.
, 2002, “
Are Neural Network Techniques the Solution to Measurement Validation, Monitoring and Automatic Diagnosis of Sensor Faults?
,”
Proceedings of the 41st SICE Annual Conference SICE 2002
, Vol.
3
, Nos.
5–7
, pp.
2052
2057
.
15.
Using Simulink
,” The Mathworks, 2005 (http://www.mathworks.com/http://www.mathworks.com/).
16.
REAL TIME WORKSHOP, The Mathworks, 2005 (http://www.mathworks.com/http://www.mathworks.com/).
17.
Fravolini
,
M. L.
,
Campa
,
G.
,
Napolitano
,
M. R.
, and
Perhinschi
,
M. G.
, 2004, “
A Learning Based Sensor Validation Scheme Within Flight Control Laws
,”
J. Guid. Control Dyn.
0731-5090,
27
(
2
), pp.
307
310
.
18.
Lu
,
Y.
,
Sundararajan
,
N.
, and
Saratchandran
,
P.
, 2000, “
Analysis of Minimal Radial Basis Function Network Algorithm for Real-Time Identification of Non-Linear Dynamic Systems
,”
IEE Proceedings on Control Theory and Application
, Vol.
4
, No.
147
, p.
476
.
19.
Thompson
,
G.
,
Gautam
,
M.
,
Clark
,
N.
, and
Lyons
,
D.
, 2002, “
Inference of Torque and Power From Heavy-Duty Diesel Engines for On-Road Emissions Monitoring
,” SAE Technical Paper No. 2002–01–0614.
20.
Diamond II+ Annubar Flow Element-Product Data Sheet-00813-0100-4760
,” Dietrich Standard Inc. Report No. DS-4009.
21.
Gautam
,
M.
,
Clark
,
N. N.
,
Thompson
,
G. J.
,
Carder
,
D. K.
, and
Lyons
,
D. W.
, 2000, “
Evaluation of Mobile Monitoring Technologies for Heavy-Duty Diesel-Powered Vehicle Emissions
,” Settling Heavy-Duty Diesel Engine Manufacturers by West Virginia University, Phase I Report.
22.
Gautam
,
M.
,
Clark
,
N. N.
,
Thompson
,
G. J.
,
Carder
,
D. K.
, and
Lyons
,
D. W.
, 2000, “
Development of In-Use Testing Procedures for Heavy-Duty Diesel-Powered Vehicle Emissions
,” Settling Heavy-Duty Diesel Engine Manufacturers by West Virginia University, Phase II Report.
23.
Gautam
,
M.
,
Clark
,
N. N.
,
Thompson
,
G. J.
,
Carder
,
D. K.
, and
Lyons
,
D. W.
, 2000, “
Evaluation of In-Use Heavy-Duty Vehicle Emissions Using the Mobile Emissions Measurement System (MEMS)
,” Settling Heavy-Duty Diesel Engine Manufacturers by West Virginia University, Phase III Report.
24.
Simpson
,
P. K.
, 1990,
Artificial Neural Systems: Foundations, Paradigms, Applications, and Implementations
,
Pergamon
,
New York
.
25.
Eberhart
,
R.
,
Simpson
,
P.
, and
Dobbins
,
R.
, 1996,
Computational Intelligence PC Tools
,
Academic
,
New York
.
26.
Sanner
,
R. M.
, and
Slotine
,
J. J. E.
, 1992, “
Gaussian Networks for Direct Adaptive Control
,”
IEEE Trans. Neural Netw.
1045-9227,
3
(
6
), pp.
837
863
.
27.
Fabbri
,
S.
, and
Kadirkamanathan
,
V.
, 1996, “
Dynamic Structure Neural Networks for Stable Adaptive Control of Nonlinear Systems
,”
IEEE Trans. Neural Netw.
1045-9227,
7
(
5
), pp.
1151
1167
.
28.
Using Simulink
,” The Mathworks, March 2005 (http://www.mathworks.com/http://www.mathworks.com/).
29.
Frank
,
P. M.
, and
Ding
,
X.
, 1997, “
Survey of Robust Residual Generation and Evaluation Methods in Observer-Based Fault Detection Systems
,”
J. Process Control
0959-1524,
7
(
6
), pp.
403
424
.
30.
Blanke
,
M.
,
Frei
,
C.
,
Kraus
,
K.
,
Patton
,
R. J.
, and
Staroswiecki
,
M.
, 2000, “
Fault-Tolerant Control of Complex Systems
,”
Control of Complex Systems
,
P.
Albertos
,
K. J.
Åström
,
M.
Blanke
,
A.
Isidori
,
R.
Santz
, and
W.
Schaufelberger
, eds.
Springer
,
New York
.
You do not currently have access to this content.