This paper presents a sliding mode controller for a 2DOF planar pneumatic manipulator actuated by pleated pneumatic artificial muscle actuators. It is argued that it is necessary to account for the pressure dynamics of muscles and valves. A relatively detailed system model that includes pressure dynamics is established. Since the model includes actuator dynamics, feedback linearization was necessary to design a sliding mode controller. The feedback linearization and subsequent controller design are presented in detail, and the controller’s performance is evaluated, both in simulation and experimentally. Chattering was found to be quite severe, so the introduction of significant boundary layers was required.

1.
Chou
,
C. P.
, and
Hannaford
,
B.
, 1996, “
Measurement and Modelling of McKibben Pneumatic Artificial Muscles
,”
IEEE Trans. Rob. Autom.
1042-296X,
12
(
1
), pp.
90
102
.
2.
Inoue
,
K.
, 1987, “
Rubbertuators and Applications for Robots
,”
Proceedings of the 4th International Symposium on Robotic Research
, pp.
57
63
.
3.
Klute
,
G. K.
,
Czerniecki
,
J. M.
, and
Hannaford
,
B.
, 2002, “
Artificial Muscles: Actuators for Biorobotic Systems
,”
Int. J. Robot. Res.
0278-3649,
21
(
4
), pp.
295
309
.
4.
Klute
,
G. K.
, and
Hannaford
,
B.
, 2000, “
Accounting for Elastic Energy Storage in McKibben Artificial Muscle Actuators
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
122
(
2
), pp.
386
388
.
5.
Liu
,
W.
, and
Rahn
,
C. R.
, 2003, “
Fiber-Reinforced Membrane Models of McKibben Actuators
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
70
(
6
), pp.
853
859
.
6.
Manuello Bertetto
,
A.
, and
Ruggiu
,
M.
, 2004, “
Characterization and Modeling of Air Muscles
,”
Mech. Res. Commun.
0093-6413,
31
(
2
), pp.
185
194
.
7.
Repperger
,
D. W.
,
Philips
,
C. A.
,
Johnson
,
D. C.
,
Harmon
,
R. D.
, and
Johnson
,
K.
, 1997, “
A Study of Pneumatic Muscle Technology for Possible Assistance in Mobility
,”
Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Vol.
5
, pp.
1884
1887
.
8.
Schulte
,
H. F.
, 1961, “
The Characteristics of the McKibben Artificial Muscle
,”
The Application of External Power in Prosthetics and Orthotics
,
National Academy of Sciences-National Research Council
,
Washington, DC
, Publication 874, pp.
94
115
.
9.
Tondu
,
B.
, and
Lopez
,
P.
, 2000, “
Modeling and Control of McKibben Artificial Muscle Robot Actuators
,”
IEEE Control Syst. Mag.
0272-1708,
20
(
2
), pp.
15
38
.
10.
Verrelst
,
B.
,
Van Ham
,
R.
,
Vanderborght
,
B.
,
Lefeber
,
D.
,
Daerden
,
F.
, and
Van Damme
,
M.
, 2006, “
Second Generation Pleated Pneumatic Artificial Muscle and Its Robotic Applications
,”
Adv. Rob.
0169-1864,
20
(
7
), pp.
783
805
.
11.
Daerden
,
F.
, and
Lefeber
,
D.
, 2001, “
The Concept and Design of Pleated Pneumatic Artificial Muscles
,”
Int. J. Fluid Power
1439-9776,
2
(
3
), pp.
41
50
.
12.
Bicchi
,
A.
, and
Tonietti
,
G.
, 2004, “
Fast and Soft Arm Tactics: Dealing With the Safety-Performance Trade-Off in Robot Arms Design and Control
,”
IEEE Rob. Autom. Mag.
1070-9932,
11
(
2
), pp.
22
33
.
13.
Bicchi
,
A.
,
Tonietti
,
G.
,
Bavaro
,
M.
, and
Piccigallo
,
M.
, 2003, “
Variable Stiffness Actuators for Fast and Safe Motion Control
,”
Proceedings of the International Symposium on Robotics Research Springer Tracts in Advanced Robotics (STAR)
,
B.
Siciliano
,
O.
Khatib
, and
F.
Groen
, eds.,
Springer-Verlag
.
14.
Ikuta
,
K.
,
Ishii
,
H.
, and
Nokata
,
M.
, 2003, “
Safety Evaluation Method of Design and Control for Human-Care Robots
,”
Int. J. Robot. Res.
0278-3649,
22
(
5
), pp.
281
297
.
15.
Kulic
,
D.
, and
Croft
,
E. A.
, 2006, “
Real-Time Safety for Human-Robot Interaction
,”
Rob. Auton. Syst.
0921-8890,
54
(
1
), pp.
1
12
.
16.
Lim
,
H.-O.
, and
Tanie
,
K.
, 2000, “
Human Safety Mechanisms of Human-Friendly Robots: Passive Viscoelastic Trunk and Passively Movable Base
,”
Int. J. Robot. Res.
0278-3649,
19
(
4
), pp.
307
335
.
17.
Zinn
,
M.
,
Roth
,
B.
,
Khatib
,
O.
, and
Salisbury
,
J. K.
, 2004, “
A New Actuation Approach for Human Friendly Robot Design
,”
Int. J. Robot. Res.
0278-3649,
23
(
4–5
), pp.
379
398
.
18.
Balasubramanian
,
S.
,
Ward
,
J.
,
Sugar
,
T.
, and
He
,
J.
, 2007, “
Characterization of the Dynamic Properties of Pneumatic Muscle Actuators
,”
Proceedings of the 2007 IEEE Tenth International Conference on Rehabilitation Robotics
, pp.
764
770
.
19.
Gordon
,
K. E.
,
Sawickia
,
G. S.
, and
Ferris
,
D. P.
, 2006, “
Mechanical Performance of Artificial Pneumatic Muscles to Power an Anklefoot Orthosis
,”
J. Biomech.
0021-9290,
39
, pp.
1832
1841
.
20.
Surentu
,
J.
,
Tuijthof
,
J. M. G.
, and
Herder
,
J. L.
, 2007, “
Optimized Artificial Muscles for an Inherently Safe Robotic Arm
,”
Proceedings of the 2007 IEEE Tenth International Conference on Rehabilitation Robotics
, pp.
1070
1076
.
21.
Noritsugu
,
T.
, and
Tanaka
,
T.
, 1997, “
Application of a Rubber Artificial Muscle Manipulator as a Rehabilitation Robot
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
2
(
4
), pp.
259
267
.
22.
Tondu
,
B.
,
Ippolito
,
S.
,
Guiochet
,
J.
, and
Daidie
,
A.
, 2005, “
A Seven-Degrees-of Freedom Robot-Arm Driven by Pneumatic Artificial Muscles for Humanoid Robots
,”
Int. J. Robot. Res.
0278-3649,
24
(
4
), pp.
257
274
.
23.
Tsagarakis
,
N. G.
, and
Caldwell
,
G.
, 2003, “
Development and Control of a “Soft-Actuated” Exoskeleton for Use in Physiotherapy and Training
,”
Auton. Rob.
0929-5593,
15
, pp.
21
33
.
24.
Tzafestas
,
C. S.
,
M’Sirdi
,
N. K.
, and
Manamani
,
N.
, 1997, “
Adaptive Impedance Control Applied to a Pneumatic Legged Robot
,”
J. Intell. Robotic Syst.
0921-0296,
20
, pp.
105
129
.
25.
Vanderborght
,
B.
,
Verrelst
,
B.
,
Van Ham
,
R.
, and
Lefeber
,
D.
, 2006, “
Controlling a Bipedal Walking Robot Actuated by Pleated Pneumatic Artificial Muscles
,”
Robotica
0263-5747,
24
(
4
), pp.
401
410
.
26.
Zhang
,
W.
,
Accorsi
,
M. L.
, and
Leonard
,
J. W.
, 2005, “
Analysis of Geometrically Nonlinear Anisotropic Membranes: Application to Pneumatic Muscle Actuators
,”
Finite Elem. Anal. Design
0168-874X,
41
, pp.
944
962
.
27.
Schröder
,
J.
,
Kawamura
,
K.
,
Gockel
,
T.
, and
Dillmann
,
R.
, 2003, “
Improved Control of a Humanoid Arm Driven by Pneumatic Actuators
,”
Proceedings of Humanoids 2003
.
28.
Thanh
,
T. D. C.
, and
Ahn
,
K. K.
, 2006, “
Intelligent Phase Plane Switching Control of Pneumatic Artificial Muscle Manipulators With Magneto-Rheological Brake
,”
Mechatronics
0957-4158,
16
, pp.
85
95
.
29.
Thanh
,
T. D. C.
, and
Ahn
,
K. K.
, 2006, “
Nonlinear PID Control to Improve the Control Performance of 2 Axes Pneumatic Artificial Muscle Manipulator Using Neural Network
,”
Mechatronics
0957-4158,
16
(
9
), pp.
577
587
.
30.
Caldwell
,
D. G.
,
Medrano-Cerda
,
G. A.
, and
Goodwin
,
M. J.
, 1995, “
Control of Pneumatic Muscle Actuators
,”
IEEE Control Syst.
1066-033X,
15
(
1
), pp.
40
48
.
31.
Lilly
,
J. H.
, 2003, “
Adaptive Tracking for Pneumatic Muscle Actuators in Bicep and Tricep Configurations
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
1534-4320,
11
(
3
), pp.
333
339
.
32.
Medrano-Cerda
,
G. A.
,
Bowler
,
C. J.
, and
Caldwell
,
D. G.
, 1995, “
Adaptive Position Control of Antagonistic Pneumatic Muscle Actuators
,”
Proceedings of the International Conference on Intelligent Robots and Systems
, Vol.
1
, pp.
378
383
.
33.
Nouri
,
A. S.
,
Gauvert
,
C.
,
Tondu
,
B.
, and
Lopez
,
P.
, 1994, “
Generalized Variable Structure Model Reference Adaptive Control of One-Link Artificial Muscle Manipulator in Two Operating Modes
,”
Proceedings of the 1994 IEEE International Conference on Systems, Man, and Cybernetics
, Vol.
2
, pp.
1944
1950
.
34.
Tonietti
,
G.
, and
Bicchi
,
A.
, 2002, “
Adaptive Simultaneous Position and Stiffness Control for a Soft Robot Arm
,”
Proceedings of the IEEE International Symposium Intelligent Robots and Systems
, pp.
1992
1997
.
35.
Repperger
,
D. W.
,
Philips
,
C. A.
, and
Krier
,
M.
, 1999, “
Controller Design Involving Gain Scheduling for a Large Scale Pneumatic Muscle Actuator
,”
Proceedings of the 1999 IEEE International Conference on Control Applications
, pp.
285
290
.
36.
Guihard
,
M.
, and
Gorce
,
P.
, 1999, “
Dynamic Control of an Artificial Muscle Arm
,”
Proceedings of the 1999 IEEE International Conference on Systems, Man and Cybernetics
, Vol.
4
, pp.
813
818
.
37.
Hildebrandt
,
A.
,
Sawodny
,
O.
,
Neumann
,
R.
, and
Hartmann
,
A.
, 2005, “
Cascaded Control Concept of a Robot With Two Degrees of Freedom Driven by Four Artificial Pneumatic Muscle Actuators
,”
Proceedings of the 2005 American Control Conference
,
Portland, OR
, pp.
680
685
.
38.
Ahn
,
K. K.
, and
Nguyen
,
H. T. C.
, 2007, “
Intelligent Switching Control of a Pneumatic Muscle Robot Arm Using Learning Vector Quantization Neural Network
,”
Mechatronics
0957-4158,
17
, pp.
255
262
.
39.
Eskiizmirliler
,
S.
,
Tondu
,
B.
, and
Darlot
,
C.
, 2001, “
Motor Control of a Limb Segment Actuated by Artificial Muscles
,”
Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Vol.
1
, pp.
865
868
.
40.
Hesselroth
,
T.
,
Sarkar
,
K.
,
van der Smagt
,
P. P.
, and
Schulten
,
K.
, 1994, “
Neural Network Control of a Pneumatic Robot Arm
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
24
(
1
), pp.
28
38
.
41.
Balasubramanian
,
K.
, and
Rattan
,
K.
, 2005, “
Trajectory Tracking Control of a Pneumatic Muscle System Using Fuzzy Logic
,”
Proceedings of NAFIPS 2005—Annual Meeting of the North American Fuzzy Information Processing Society
, pp.
472
477
.
42.
Balasubramanian
,
K.
, and
Rattan
,
K. S.
, 2003, “
Feedforward Control of a Non-Linear Pneumatic Muscle System Using Fuzzy Logic
,”
Proceedings of The 12th IEEE International Conference on Fuzzy Systems
, Vol.
1
, pp.
272
277
.
43.
Balasubramanian
,
K.
, and
Rattan
,
K. S.
, 2003, “
Fuzzy Logic Control of a Pneumatic Muscle System Using a Linearing Control Scheme
,”
Proceedings of NAFIPS 2003—22nd International Conference of the North American Fuzzy Information Processing Society
, pp.
432
436
.
44.
Carbonell
,
P.
,
Jiang
,
Z. P.
, and
Repperger
,
D. W.
, 2001, “
A Fuzzy Backstepping Controller for a Pneumatic Muscle Actuator System
,”
Proceedings of the 2001 IEEE International Symposium on Intelligent Control
, pp.
353
358
.
45.
Chan
,
S. W.
,
Lilly
,
J. H.
,
Repperger
,
D. W.
, and
Berlin
,
J. E.
, 2003, “
Fuzzy PD+I Learning Control of a Pneumatic Muscle
,”
Proceedings of the 2003 IEEE International Conference of Fuzzy Systems
, pp.
278
283
.
46.
Clapa
,
D. J.
,
Croft
,
E. A.
, and
Hodgson
,
A. J.
, 2006, “
Equilibrium Point Control of a 2-DOF Manipulator
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
128
, pp.
134
141
.
47.
Carbonell
,
P.
,
Jiang
,
Z. P.
, and
Repperger
,
D. W.
, 2001, “
Nonlinear Control of a Pneumatic Muscle Actuator: Backstepping vs Sliding-Mode
,”
Proceedings of the 2001 IEEE International Conference on Control Applications
, pp.
167
172
.
48.
Kimura
,
T.
,
Hara
,
S.
,
Fujita
,
T.
, and
Kagawa
,
T.
, 1997, “
Feedback Linearization for Pneumatic Actuator Systems With Static Friction
,”
Control Eng. Pract.
0967-0661,
5
(
10
), pp.
1385
1394
.
49.
Cai
,
D.
, and
Dai
,
Y.
, 2003, “
A Sliding Mode Controller for Manipulator Driven by Artificial Muscle Actuator
,”
Electron. Commun. Jpn.
0424-8368,
86
(
11
), pp.
57
64
.
50.
Lilly
,
J. H.
, and
Quesada
,
P. M.
, 2004, “
A Two-Input Sliding-Mode Controller for a Planar Arm Actuated by Four Pneumatic Muscle Groups
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
1534-4320,
12
(
3
), pp.
349
359
.
51.
Lilly
,
J. H.
, and
Yang
,
L.
, 2005, “
Sliding Mode Tracking for Pneumatic Muscle Actuators in Opposing Pair Configuration
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
13
(
4
), pp.
550
558
.
52.
Repperger
,
D. W.
,
Johnson
,
K. R.
, and
Philips
,
C. A.
, 1998, “
A VSC Position Tracking System Involving a Large Scale Pneumatic Muscle Actuator
,”
Proceedings of the 37th IEEE Conference on Decision & Control
, pp.
4302
4307
.
53.
Sira-Ramírez
,
H.
,
Lopez
,
P.
, and
Tondu
,
B.
, 1996, “
On the Robust Stabilization and Tracking for Robotic Manipulators With Artificial Muscles
,”
Int. J. Syst. Sci.
0020-7721,
27
(
11
), pp.
1067
1075
.
54.
Yang
,
L.
, 2006, “
Sliding Mode Control of Robotics Systems Actuated by Pneumatic Muscles
,” Ph.D. thesis, University of Louisville, Louisville, KY.
55.
Hamerlain
,
M.
, 1995, “
An Anthropomorphic Robot Arm Driven by Artificial Muscles Using a Variable Structure Control
,”
Proceedings of the 1995 IEEE/RJS International Conference of Intelligent Robots and Systems
, Vol.
1
, pp.
550
555
.
56.
Van Damme
,
M.
,
Daerden
,
F.
, and
Lefeber
,
D.
, 2005, “
A Pneumatic Manipulator Used in Direct Contact With an Operator
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
, pp.
4505
4510
.
57.
Daerden
,
F.
, and
Lefeber
,
D.
, 2002, “
Pneumatic Artificial Muscles: Actuators for Robotics and Automation
,”
European Journal of Mechanical and Environmental Engineering
,
47
(
1
), pp.
11
22
.
58.
Verrelst
,
B.
,
Van Ham
,
R.
,
Vanderborght
,
B.
,
Daerden
,
F.
, and
Lefeber
,
D.
, 2005, “
The Pneumatic Biped “LUCY” Actuated With Pleated Pneumatic Artificial Muscles
,”
Auton. Rob.
0929-5593,
18
, pp.
201
213
.
59.
Verrelst
,
B.
,
Vermeulen
,
J.
,
Vanderborght
,
B.
,
Van Ham
,
R.
,
Naudet
,
J.
,
Lefeber
,
D.
,
Daerden
,
F.
, and
Van Damme
,
M.
, 2006, “
Motion Generation and Control for the Pneumatic Biped “Lucy,”
,”
International Journal of Humanoid Robotics
,
3
(
1
), pp.
67
103
.
60.
Daerden
,
F.
, 1999, “
Conception and Realization of Pleated Pneumatic Artificial Muscles and Their Use as Compliant Actuation Elements
,” Ph.D. thesis, Vrije Universiteit Brussel, Brussel, Belgium.
61.
Reynolds
,
D. B.
,
Repperger
,
D. W.
,
Phillips
,
C. A.
, and
Bandry
,
G.
, 2003, “
Modeling the Dynamic Characteristics of Pneumatic Muscle
,”
Ann. Biomed. Eng.
0090-6964,
31
(
3
), pp.
310
317
.
62.
Khalil
,
H. K.
, 2002,
Nonlinear Systems
, 3rd ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
63.
Hung
,
J. Y.
,
Gao
,
W.
, and
Hung
,
J. C.
, 1993, “
Variable Structure Control: A Survey
,”
IEEE Trans. Ind. Electron.
0278-0046,
40
(
1
), pp.
2
22
.
64.
Perruquetti
,
W.
, 2002,
Sliding Mode Control in Engineering
,
J. P.
Barbot
, ed.,
Marcel Dekker
,
New York
.
65.
Slotine
,
J.-J.
, and
Li
,
W.
, 1991,
Applied Nonlinear Control
,
Prentice-Hall
,
Upper Saddle River, NJ
.
66.
Utkin
,
V. I.
, 1977, “
Variable Structure Systems With Sliding Modes
,”
IEEE Trans. Autom. Control
0018-9286,
22
, pp.
212
222
.
67.
Daerden
,
F.
,
Lefeber
,
D.
,
Verrelst
,
B.
, and
Van Ham
,
R.
, 2001, “
Pleated Pneumatic Artificial Muscles: Actuators for Automation and Robotics
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Como, Italy
, pp.
738
743
.
68.
Spong
,
M. W.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
, 2006,
Robot Modeling and Control
,
Wiley
,
New York
.
69.
Tondu
,
B.
,
Boitier
,
V.
, and
Lopez
,
P.
, 1994, “
Naturally Compliant Robot-Arms Actuated by McKibben Artificial Muscles
,”
Proceedings of the 1994 IEEE International Conference on Systems, Man and Cybernetics
, Vol.
3
, pp.
2635
2640
.
70.
Verrelst
,
B.
, 2005, “
A Dynamic Walking Biped Actuated by Pleated Pneumatic Artificial Muscles: Basic Concepts and Control Issues
,” Ph.D. thesis, Vrije Universiteit Brussel, Brussel, Belgium.
71.
Vanderborght
,
B.
,
Verrelst
,
B.
,
Van Ham
,
R.
,
Van Damme
,
M.
,
Beyl
,
P.
, and
Lefeber
,
D.
, 2008, “
Development of a Compliance Controller to Reduce Energy Consumption for Bipedal Robots
,”
Auton. Rob.
0929-5593,
24
(
4
), pp.
419
434
.
72.
Vanderborght
,
B.
,
Verrelst
,
B.
,
Van Ham
,
R.
,
Van Damme
,
M.
,
Lefeber
,
D.
,
Meira
,
Y.
,
Duran
,
B.
, and
Beyl
,
P.
, 2006, “
Exploiting Natural Dynamics to Reduce Energy Consumption by Controlling the Compliance of Soft Actuators
,”
Int. J. Robot. Res.
0278-3649,
25
(
4
), pp.
343
358
.
73.
Sastry
,
S.
, 1999,
Nonlinear Systems: Analysis, Stability and Control
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.