This paper presents a dual-stage control system design method for flexible spacecraft attitude tracking control and active vibration suppression by an embedded smart material as sensors/actuators. More specifically, a conventional sliding mode controller with the assumption of knowing system parameters is first designed that ensures asymptotical convergence of attitude tracking error described by error quaternion and its derivative in the presence of bounded parameter variation/disturbance. Then it is redesigned, such that the need for knowing the system parameters in advance is eliminated by using an adaptive updating law. For the synthesis of the controller, to achieve the prescribed L2-gain performance criterion, the control gains are designed by solving a linear matrix inequality problem. Indeed, external torque disturbances/parametric error attenuations with respect to the performance measurement along with the control input penalty are ensured in the L2-gain sense. Even if this controller has the ability to reject the disturbance and deal with actuator constraint, it excites the elastic modes of flexible appendages, which will deteriorate the pointing performance. Then the undesirable vibration is actively suppressed by applying feedback control voltages to the piezoceramic actuator, in which the modal velocity feedback control method is employed for determining the control voltages. Numerical simulations are performed to show that attitude tracking and vibration suppression are accomplished, in spite of the presence of disturbances/parameter uncertainties and even control input constraint.

1.
Singh
,
S. N.
, 1988, “
Rotational Maneuvers of Nonlinear Uncertain Spacecraft
,”
IEEE Trans. Aerosp. Electron. Syst.
0018-9251,
24
, pp.
114
123
.
2.
Nagata
,
T.
,
Modi
,
V. J.
, and
Matsuo
,
H.
, 2001, “
Dynamics and Control of Flexible Multibody Systems: Part II: Simulation Code and Parametric Studies With Nonlinear Control
,”
Acta Astronaut.
0094-5765,
49
, pp.
595
610
.
3.
Karray
,
F.
,
Grewal
,
A.
,
Glaum
,
M.
, and
Modi
,
V.
, 1997, “
Stiffening Control of a Class of Nonlinear Affine System
,”
IEEE Trans. Aerosp. Electron. Syst.
0018-9251,
33
(
2
), pp.
473
484
.
4.
Hu
,
Q. L.
, and
Ma
,
G. F.
, 2005, “
Vibration Suppression of Flexible Spacecraft During Attitude Maneuvers
,”
J. Guid. Control Dyn.
0731-5090,
28
(
2
), pp.
377
380
.
5.
Iyer
,
A.
, and
Singh
,
S. N.
, 1991, “
Variable Structure Slewing Control and Vibration Damping of Flexible Spacecraft
,”
Acta Astronaut.
0094-5765,
25
(
1
), pp.
1
9
.
6.
Singh
,
S. N.
, 1987, “
Robust Nonlinear Attitude Control of Flexible Spacecraft
,”
IEEE Trans. Aerosp. Electron. Syst.
0018-9251,
AES-23
(
3
), pp.
380
387
.
7.
Oz
,
H.
, and
Mostafa
,
O.
, 1988, “
Variable Structure Control Systems (VSCS) Maneuvering of Flexible Spacecraft
,”
J. Astronaut. Sci.
0021-9142,
36
(
3
), pp.
311
344
.
8.
Nayeri
,
M. R. D.
,
Alasty
,
A.
, and
Daneshjou
,
K.
, 2004, “
Neural Optimal Control of Flexible Spacecraft Slew Maneuver
,”
Acta Astronaut.
0094-5765,
55
, pp.
817
827
.
9.
Show
,
L. L.
,
Juang
,
J. C.
,
Jan
,
Y. W.
, and
Lin
,
C. T.
, 2003, “
Quaternion Feedback Attitude Control Design: A Nonlinear H∞ Approach
,”
SIAM J. Control
0036-1402,
5
, pp.
406
411
.
10.
Zeng
,
Y.
,
Araujo
,
A. D.
, and
Singh
,
S. N.
, 1999, “
Output Feedback Variable Structure Adaptive Control of a Flexible Spacecraft
,”
Acta Astronaut.
0094-5765,
44
(
1
), pp.
11
22
.
11.
Singh
,
S. N.
, and
Zhang
,
R.
, 2004, “
Adaptive Output Feedback Control of Flexible With Flexible Appendages by Modeling Error Compensation
,”
Acta Astronaut.
0094-5765,
54
, pp.
229
243
.
12.
Hu
,
Q. L.
, and
Ma
,
G. F.
, 2006, “
Adaptive Variable Structure Maneuvering Control and Vibration Reduction of Three-Axis Stabilized Flexible Spacecraft
,”
Eur. J. Control
0947-3580,
12
(
6
), pp.
654
668
.
13.
Ahmed
,
J.
,
Coppola
,
V. T.
, and
Bernstein
,
D. S.
, 1998, “
Adaptive Asymptotic Tracking of Spacecraft Attitude Motion With Inertia Matrix Identification
,”
J. Guid. Control Dyn.
0731-5090,
21
(
5
), pp.
684
691
.
14.
Bošković
,
J. D.
,
Li
,
S. M.
, and
Mehra
,
R. K.
, 2001, “
Robust Adaptive Variable Structure Control of Spacecraft Under Control Input Saturation
,”
J. Guid. Control Dyn.
0731-5090,
24
(
1
), pp.
14
22
.
15.
Schaub
,
H.
,
Akella
,
M. R.
, and
Junkins
,
J. L.
, 2001, “
Adaptive Control of Nonlinear Attitude Motions Realizing Linear Closed Loop Dynamics
,”
J. Guid. Control Dyn.
0731-5090,
24
(
1
), pp.
95
100
.
16.
Junkins
,
J. L.
,
Akella
,
M. R.
, and
Robinett
,
R. D.
, 1997, “
Nonlinear Adaptive Control of Spacecraft Maneuvers
,”
J. Guid. Control Dyn.
0731-5090,
20
(
6
), pp.
1104
1110
.
17.
Chiu
,
C. S.
, and
Lian
,
K. Y.
, 2007, “
Adaptive Motion/Force Tracking Control of Holonomic Constrained Mechanical System: A Unified Viewpoint
,”
Int. J. Adapt. Control Signal Process.
0890-6327,
21
, pp.
415
433
.
18.
Chen
,
B. S.
,
Chang
,
Y. C.
, and
Lee
,
T. C.
, 1997, “
Adaptive Control in Robotic Systems With H∞ Tracking Performance
,”
Automatica
0005-1098,
33
(
2
), pp.
227
234
.
19.
Bošković
,
J. D.
,
Li
,
S. M.
, and
Mehra
,
R. K.
, 2004, “
Robust Tracking Control Design for Spacecraft Under Control Input Saturation
,”
J. Guid. Control Dyn.
0731-5090,
27
(
4
), pp.
627
633
.
20.
Tsiotras
,
P.
, and
Luo
,
J.
, 2000, “
Control of Under-Actuated Spacecraft With Bounded Inputs
,”
Automatica
0005-1098,
36
(
8
), pp.
1153
1169
.
21.
Robinett
,
R. D.
,
Parker
,
G. D.
,
Schaub
,
H.
, and
Junkins
,
J. L.
, 1997, “
Lyapunov Optimal Saturated Control for Nonlinear Systems
,”
J. Guid. Control Dyn.
0731-5090,
20
(
6
), pp.
1083
1088
.
22.
Wallsgrove
,
R. J.
, and
Akella
,
M. R.
, 2005, “
Globally Stabilizing Saturated Attitude Control in the Presence of Bounded Unknown Disturbances
,”
J. Guid. Control Dyn.
0731-5090,
28
(
5
), pp.
957
963
.
23.
Hu
,
Q. L.
,
Shi
,
P.
, and
Gao
,
H. J.
, 2007, “
Adaptive Variable Structure and Commanding Shaped Vibration Control of Flexible Spacecraft
,”
J. Guid. Control Dyn.
0731-5090,
30
(
3
), pp.
804
815
.
24.
Gorinevsky
,
D.
, and
Vukovich
,
G.
, 1998, “
Nonlinear Input Shaping Control of Flexible Spacecraft Reorientation Maneuver
,”
J. Guid. Control Dyn.
0731-5090,
21
(
2
), pp.
264
270
.
25.
Junkins
,
J. L.
, and
Bang
,
H.
, 1993, “
Maneuver and Vibration Control of Hybrid Coordinate Systems Using Lyapunov Stability Theory
,”
J. Guid. Control Dyn.
0731-5090,
16
, pp.
668
676
.
26.
Goel
,
P. S.
, and
Maharana
,
P. K.
, 1995, “
An Active Damping Technique for Satellites With Flexible Appendages
,”
Acta Astronaut.
0094-5765,
36
(
5
), pp.
239
250
.
27.
Singh
,
S. N.
, and
Arahio
,
A. D.
, 1999, “
Adaptive Control and Stabilization of Elastic Spacecraft
,”
IEEE Trans. Aerosp. Electron. Syst.
0018-9251,
35
, pp.
115
122
.
28.
Maganti
,
G. B.
, and
Singh
,
S. N.
, 2007, “
Simplified Adaptive Control of an Orbiting Flexible Spacecraft
,”
Acta Astronaut.
0094-5765,
61
(
7–8
), pp.
575
589
.
29.
di Gennaro
,
S.
, 1998, “
Active Vibration Suppression in Flexible Spacecraft Attitude Tracking
,”
J. Guid. Control Dyn.
0731-5090,
21
(
3
), pp.
400
408
.
30.
di Gennaro
,
S.
, 2003, “
Output Stabilization of Flexible Spacecraft With Active Vibration Suppression
,”
IEEE Aerosp. Electron. Syst. Mag.
0885-8985,
39
(
3
), pp.
747
759
.
31.
Song
,
G.
, and
Agrawal
,
B. N.
, 2001, “
Vibration Suppression of Flexible Spacecraft During Attitude Control
,”
Acta Astronaut.
0094-5765,
49
(
2
), pp.
73
83
.
32.
Iyer
,
A.
, and
Singh
,
S. N.
, 1990, “
Sliding Mode Control of Flexible Spacecraft Under Disturbance Torque
,”
Int. J. Syst. Sci.
0020-7721,
21
(
9
), pp.
1755
1771
.
33.
Hu
,
Q. L.
, and
Ma
,
G. F.
, 2005, “
Variable Structure Control and Active Vibration Suppression of Flexible Spacecraft During Attitude Maneuver
,”
Aerosp. Sci. Technol.
1270-9638,
9
, pp.
307
317
.
34.
Kaplan
,
M. H.
, 1976,
Modern Spacecraft Dynamics and Control
,
Wiley
,
New York
.
You do not currently have access to this content.