This brief proposes a numerical approach for simultaneous prediction of stability lobe diagrams and surface location error in low radial immersion milling based on the direct integration scheme and the precise time-integration method. First, the mathematical model of the milling dynamics considering the regenerative effect is presented in a state space form. With the cutter tooth passing period being divided equally into a finite number of elements, the response of the system is formulated on the basis of the direct integration scheme. Then, the four involved time-variant items, i.e., the time-periodic coefficient item, system state item, time delay item, and static force item in the integration terms of the response, are discretized via linear approximations, respectively. The corresponding matrix exponential related functions are all calculated by using the precise time-integration method. After the state transition expression on one small time interval being constructed, an explicit form for the discrete dynamic map of the system on one tooth passing period is established. Thereafter, the milling stability is predicted via Floquet theory and the surface location error is calculated from the fixed point of the dynamic map. The proposed method is verified by the benchmark theoretical and experimental results in published literature. The high efficiency of the algorithm is also demonstrated.

1.
Balachandran
,
B.
, 2001, “
Nonlinear Dynamics of Milling Processes
,” Philosophical Transactions: Mathematical, Physical and Engineering Sciences, pp.
793
819
.
2.
Altintas
,
Y.
, 2000,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
,
Cambridge
.
3.
Schmitz
,
T. L.
,
Davies
,
M. A.
, and
Kennedy
,
M. D.
, 2001, “
Tool Point Frequency Response Prediction for High-Speed Machining by RCSA
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
(
4
), pp.
700
707
.
4.
Filiz
,
S.
,
Cheng
,
C. H.
,
Powell
,
K. B.
,
Schmitz
,
T. L.
, and
Ozdoganlar
,
O. B.
, 2009, “
An Improved Tool-Holder Model for RCSA Tool-Point Frequency Response Prediction
,”
Precis. Eng.
0141-6359,
33
(
1
), pp.
26
36
.
5.
Budak
,
E.
, 1994, “
Mechanics and Dynamics of Milling Thin-Walled Structures
,” Ph.D. thesis, University of British Columbia, Vancouver, Canada.
6.
Budak
,
E.
, and
Altintas
,
Y.
, 1998, “
Analytical Prediction of Chatter Stability in Milling—Part I: General Formulation
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
120
(
1
), pp.
22
30
.
7.
Budak
,
E.
, and
Altintas
,
Y.
, 1998, “
Analytical Prediction of Chatter Stability in Milling—Part II: Application of the General Formulation to Common Milling Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
120
(
1
), pp.
31
36
.
8.
Merdol
,
S. D.
, and
Altintas
,
Y.
, 2004, “
Multi Frequency Solution of Chatter Stability for Low Immersion Milling
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
3
), pp.
459
466
.
9.
Davies
,
M. A.
,
Pratt
,
J. R.
,
Dutterer
,
B. S.
, and
Burns
,
T. J.
, 2000, “
Stability of Low Radial Immersion Milling
,”
CIRP Ann.
0007-8506,
49
(
1
), pp.
37
40
.
10.
Davies
,
M. A.
,
Pratt
,
J. R.
,
Dutterer
,
B.
, and
Burns
,
T. J.
, 2002, “
Stability Prediction for Low Radial Immersion Milling
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
(
2
), pp.
217
225
.
11.
Bayly
,
P. V.
,
Halley
,
J. E.
,
Mann
,
B. P.
, and
Davies
,
M. A.
, 2003, “
Stability of Interrupted Cutting by Temporal Finite Element Analysis
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
(
2
), pp.
220
225
.
12.
Bayly
,
P. V.
,
Mann
,
B. P.
,
Schmitz
,
T. L.
,
Peters
,
D. A.
,
Stepan
,
G.
, and
Insperger
,
T.
, 2002, Effects of Radial Immersion and Cutting Direction on Chatter Instability in End-Milling,
American Society of Mechanical Engineers, Manufacturing Engineering Division, MED
, eds., Vol.
13
, pp.
351
363
.
13.
Campomanes
,
M. L.
, and
Altintas
,
Y.
, 2003, “
An Improved Time Domain Simulation for Dynamic Milling at Small Radial Immersions
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
(
3
), pp.
416
422
.
14.
Insperger
,
T.
, and
Stépán
,
G.
, 2002, “
Semi-Discretization Method for Delayed Systems
,”
Int. J. Numer. Methods Eng.
0029-5981,
55
(
5
), pp.
503
518
.
15.
Insperger
,
T.
, and
Stépán
,
G.
, 2004, “
Updated Semi-Discretization Method for Periodic Delay-Differential Equations With Discrete Delay
,”
Int. J. Numer. Methods Eng.
0029-5981,
61
(
1
), pp.
117
141
.
16.
Insperger
,
T.
,
Stépán
,
G.
, and
Turi
,
J.
, 2008, “
On the Higher-Order Semi-Discretizations for Periodic Delayed Systems
,”
J. Sound Vib.
0022-460X,
313
(
1–2
), pp.
334
341
.
17.
Asl
,
F. M.
, and
Ulsoy
,
A. G.
, 2003, “
Analysis of a System of Linear Delay Differential Equations
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
125
(
2
), pp.
215
223
.
18.
Yi
,
S.
,
Nelson
,
P. W.
, and
Ulsoy
,
A. G.
, 2007, “
Delay Differential Equations via the Matrix Lambert W Function and Bifurcation Analysis: Application to Machine Tool Chatter
,”
Math. Biosci. Eng.
1547-1063,
4
(
2
), pp.
355
368
.
19.
Butcher
,
E. A.
,
Bobrenkov
,
O. A.
,
Bueler
,
E.
, and
Nindujarla
,
P.
, 2009, “
Analysis of Milling Stability by the Chebyshev Collocation Method: Algorithm and Optimal Stable Immersion Levels
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
4
(
3
), p.
031003
.
20.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
, 2010, “
A Full-Discretization Method for Prediction of Milling Stability
,”
Int. J. Mach. Tools Manuf.
0890-6955,
50
(
5
), pp.
502
509
.
21.
Altintas
,
Y.
, and
Weck
,
M.
, 2004, “
Chatter Stability of Metal Cutting and Grinding
,”
CIRP Ann.
0007-8506,
53
(
2
), pp.
619
642
.
22.
Altintas
,
Y.
,
Stépán
,
G.
,
Merdol
,
D.
, and
Dombovari
,
Z.
, 2008, “
Chatter Stability of Milling in Frequency and Discrete Time Domain
,”
CIRP Journal of Manufacturing Science and Technology
,
1
(
1
), pp.
35
44
.
23.
Schmitz
,
T.
, and
Ziegert
,
J.
, 1999, “
Examination of Surface Location Error Due to Phasing of Cutter Vibrations
,”
Precis. Eng.
0141-6359,
23
(
1
), pp.
51
62
.
24.
Schmitz
,
T. L.
, and
Mann
,
B. P.
, 2006, “
Closed-Form Solutions for Surface Location Error in Milling
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
(
12–13
), pp.
1369
1377
.
25.
Mann
,
B. P.
,
Bartow
,
M. J.
,
Young
,
K. A.
,
Bayly
,
P. V.
, and
Schmitz
,
T. L.
, 2003, Machining Accuracy Due to Tool or Workpiece Vibrations,
American Society of Mechanical Engineers, Manufacturing Engineering Division, MED
, eds., Vol.
14
, pp.
55
62
.
26.
Mann
,
B. P.
,
Young
,
K. A.
,
Schmitz
,
T. L.
, and
Dilley
,
D. N.
, 2005, “
Simultaneous Stability and Surface Location Error Predictions in Milling
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
127
(
3
), pp.
446
453
.
27.
Mann
,
B. P.
,
Edes
,
B. T.
,
Easley
,
S. J.
,
Young
,
K. A.
, and
Ma
,
K.
, 2008, “
Chatter Vibration and Surface Location Error Prediction for Helical End Mills
,”
Int. J. Mach. Tools Manuf.
0890-6955,
48
(
3–4
), pp.
350
361
.
28.
Insperger
,
T.
,
Gradisek
,
J.
,
Kalveram
,
M.
,
Stepan
,
G.
,
Winert
,
K.
, and
Govekar
,
E.
, 2006, “
Machine Tool Chatter and Surface Location Error in Milling Processes
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
4
), pp.
913
920
.
29.
Insperger
,
T.
, 2010, “
Full-Discretization and Semi-Discretization for Milling Stability Prediction: Some Comments
,”
Int. J. Mach. Tools Manuf.
0890-6955,
50
(
7
), pp.
658
662
.
30.
Zhong
,
W. X.
, and
Williams
,
F. W.
, 1994, “
A Precise Time Step Integration Method
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
208
(
6
), pp.
427
430
.
31.
Gu
,
Y.
,
Chen
,
B.
,
Zhang
,
H.
, and
Guan
,
Z.
, 2001, “
Precise Time-Integration Method With Dimensional Expanding for Structural Dynamic Equations
,”
AIAA J.
0001-1452,
39
(
12
), pp.
2394
2399
.
32.
Zhong
,
W.
, 2004,
Duality System in Applied Mechanics and Optimal Control
,
Kluwer Academic
,
Boston
.
33.
Li
,
K.
, and
Darby
,
A. P.
, 2009, “
A High Precision Direct Integration Scheme for Nonlinear Dynamic Systems
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
4
(
4
), p.
041008
.
34.
Zhong
,
W.
,
Tan
,
S.
, and
Wu
,
Z.
, 2005, “
The Optimal Control of Time-Delay System
,”
Proceedings of the 24th Chinese Control Conference
, Guangzhou, P.R. China, pp.
394
398
.
35.
Tan
,
S.
, and
Zhong
,
W.
, 2007, “
Precise Integration Method for Duhamel Terms Arising From Non-Homogenous Dynamic Systems
,”
Chinese Journal of Theoretical and Applied Mechanics
,
39
(
3
), pp.
374
381
.
36.
Meyer
,
C. D.
, 2000,
Matrix Analysis and Applied Linear Algebra
,
SIAM
,
Philadelphia
.
37.
Farkas
,
M.
, 1994,
Periodic Motions
,
Springer-Verlag
,
New York
.
38.
Zatarain
,
M.
,
Munoa
,
J.
,
Peigne
,
G.
, and
Insperger
,
T.
, 2006, “
Analysis of the Influence of Mill Helix Angle on Chatter Stability
,”
CIRP Ann.
0007-8506,
55
(
1
), pp.
365
368
.
You do not currently have access to this content.