An efficient nonprobabilistic robust reliability method for H∞ robust controller design of parametric uncertain systems is presented by describing the uncertain parameters as interval variables. Design optimization of H∞ robust controller is carried out by solving a robust reliability based optimization problem, by which the disturbance attenuation, control cost, and robust reliability can be taken into account simultaneously. By the method, a robust reliability measure of an uncertain control system satisfying required H∞ robust performance can be obtained, and the robustness bounds of uncertain parameters such that the control cost of the system is guaranteed can be provided. The presented formulations are in the framework of linear matrix inequality and thus can be carried out conveniently. The presented method provides an essential basis for reasonable tradeoff between reliability and control cost in controller design of uncertain systems. Active control design of vehicle suspension is employed for illustrating the effectiveness and feasibility of the presented method.
Skip Nav Destination
Article navigation
March 2014
Technical Briefs
Robust Reliability Based Optimal Design of H∞ Control of Parametric Uncertain Systems
Shu-Xiang Guo
Shu-Xiang Guo
Professor
Faculty of Mechanics,
College of Science,
e-mail: guoshuxiang66@163.com
Faculty of Mechanics,
College of Science,
Air Force Engineering University
,Xi'an 710051
, China
e-mail: guoshuxiang66@163.com
Search for other works by this author on:
Shu-Xiang Guo
Professor
Faculty of Mechanics,
College of Science,
e-mail: guoshuxiang66@163.com
Faculty of Mechanics,
College of Science,
Air Force Engineering University
,Xi'an 710051
, China
e-mail: guoshuxiang66@163.com
Contributed by the Dynamic Systems Division of ASME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received April 14, 2013; final manuscript received October 23, 2013; published online December 9, 2013. Assoc. Editor: Fu-Cheng Wang.
J. Dyn. Sys., Meas., Control. Mar 2014, 136(2): 024504 (7 pages)
Published Online: December 9, 2013
Article history
Received:
April 14, 2013
Revision Received:
October 23, 2013
Citation
Guo, S. (December 9, 2013). "Robust Reliability Based Optimal Design of H∞ Control of Parametric Uncertain Systems." ASME. J. Dyn. Sys., Meas., Control. March 2014; 136(2): 024504. https://doi.org/10.1115/1.4025862
Download citation file:
Get Email Alerts
Cited By
Multi Combustor Turbine Engine Acceleration Process Control Law Design
J. Dyn. Sys., Meas., Control
A Distributed Layered Planning and Control Algorithm for Teams of Quadrupedal Robots: An Obstacle-Aware Nonlinear Model Predictive Control Approach
J. Dyn. Sys., Meas., Control (May 2025)
Active Data-Enabled Robot Learning of Elastic Workpiece Interactions
J. Dyn. Sys., Meas., Control (May 2025)
Innovative Pressure Control With ANFIS-Enhanced Mode Switching for High-Speed Pneumatic Systems
J. Dyn. Sys., Meas., Control (May 2025)
Related Articles
Guaranteed Cost Observer-Based Control for a Class of Uncertain Time-Delay Systems
J. Dyn. Sys., Meas., Control (December,2005)
Output–Feedback Regulation of the Contact-Force in High-Speed Train Pantographs
J. Dyn. Sys., Meas., Control (March,2004)
A Note on Observer-Based Frequency Control for a Class of Systems Described by Uncertain Models
J. Dyn. Sys., Meas., Control (February,2018)
Convex Optimization Approach to Observer-Based Stabilization of Uncertain Linear Systems
J. Dyn. Sys., Meas., Control (December,2006)
Related Proceedings Papers
Related Chapters
Fault-Tolerant Control of Sensors and Actuators Applied to Wind Energy Systems
Electrical and Mechanical Fault Diagnosis in Wind Energy Conversion Systems
Engineering Design about Electro-Hydraulic Intelligent Control System of Multi Axle Vehicle Suspension
International Conference on Instrumentation, Measurement, Circuits and Systems (ICIMCS 2011)
A Smart Sampling Strategy for One-at-a-Time Sensitivity Experiments (PSAM-0360)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)