The low-temperature operations of diesel engines and aftertreatment systems have attracted increasing attention over the past decade due to the stringent diesel emission regulations and excessive tailpipe emissions at low temperatures. The removal of NOx emissions using selective catalytic reduction (SCR) systems during low-temperature operations remains a significant challenge. One of the popular techniques for alleviating this issue is to employ active thermal management via in-cylinder postinjection to promote aftertreatment system temperatures. Meanwhile, numerous studies have focused on ammonia coverage ratio controls with the aim to maintain high NOx conversion efficiency and low tailpipe ammonia slip. However, most of the active thermal management and SCR controls in the existing literatures were separately and conservatively designed, which can lead to higher cost of SCR operation than needed including diesel fuel consumption through active thermal management and urea solution consumption. The main purpose of this study is to design and coordinate active thermal management and SCR control using nonlinear model predictive control (NMPC) approach to minimize the total cost of SCR operation while obtaining high NOx conversion efficiency and low tailpipe ammonia slip. Simulation results demonstrate that, compared to the baseline control which consists of separated active thermal management and SCR control, the coordinated control is capable of reducing the total cost of SCR operation by 25.6% while maintaining the tailpipe NOx emissions and ammonia slip at comparable levels. Such an innovative coordinated control design concept shows its promise in achieving low tailpipe emissions during low-temperature operations in a cost-effective fashion.

References

1.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
2.
Chen
,
P.
, and
Wang
,
J.
,
2013
, “
Observer-Based Estimation of Air-Fractions for a Diesel Engine Coupled With Aftertreatment Systems
,”
IEEE Trans. Control Syst. Technol.
,
21
(
6
), pp.
2239
2250
.
3.
Zheng
,
M.
,
Reader
,
G. T.
, and
Hawley
,
J. G.
,
2004
, “
Diesel Engine Exhaust Gas Recirculation––A Review on Advanced and Novel Concepts
,”
Energy Convers. Manage.
,
45
(
6
), pp.
883
900
.
4.
Johnson
,
T.
,
2013
, “
Vehicular Emissions in Review
,”
SAE Int. J. Engines
,
6
(
2
), pp.
699
715
.
5.
Skaf
,
Z.
,
Aliyev
,
T.
,
Shead
,
L.
, and
Steffen
,
T.
,
2014
, “
The State of the Art in Selective Catalytic Reduction Control
,”
SAE
Paper No. 2014-01-1533.
6.
Hsieh
,
M.
, and
Wang
,
J.
,
2012
, “
Adaptive and Efficient Ammonia Storage Distribution Control for a Two-Catalyst Selective Catalytic Reduction System
,”
ASME J. Dyn. Syst. Meas. Control
,
134
(
1
), p.
011012
.
7.
Bouchez
,
M.
, and
Dementhon
,
J. B.
,
2000
, “
Strategies for the Control of Particulate Trap Regeneration
,”
SAE
Paper No. 2000-01-0472.
8.
Mayer
,
A.
,
Lutz
,
T.
,
Lämmle
,
C.
,
Wyser
,
M.
, and
Legerer
,
F.
,
2003
, “
Engine Intake Throttling for Active Regeneration of Diesel Particle Filters
,”
SAE
Paper No. 2003-01-0381.
9.
Toorisaka
,
H.
,
Minamikawa
,
J.
,
Narita
,
H.
,
Muramatsu
,
T.
,
Kominami
,
T.
, and
Sone
,
T.
,
2004
, “
DPR Developed for Extremely Low PM Emissions in Production Commercial Vehicles
,”
SAE
Paper No. 2004-01-0824.
10.
Kong
,
Y.
,
Kozakiewicz
,
T.
,
Johnson
,
R.
,
Huffmeyer
,
C.
,
Huckaby
,
J.
,
Abel
,
J.
,
Baurley
,
J.
, and
Duffield
,
K.
,
2005
, “
Active DPF Regeneration for 2007 Diesel Engines
,”
SAE
Paper No. 2005-01-3509.
11.
Singh
,
P.
,
Thalagavara
,
A. M.
,
Naber
,
J. D.
,
Johnson
,
J. H.
, and
Bagley
,
S. T.
,
2006
, “
An Experimental Study of Active Regeneration of an Advanced Catalyzed Particulate Filter by Diesel Fuel Injection Upstream of an Oxidation Catalyst
,”
SAE
Paper No. 2006-01-0879.
12.
Kotrba
,
A.
,
Brockman
,
A.
,
Martin
,
S.
,
Mikovits
,
A.
,
Butzke
,
G. L.
,
Richey
,
Z.
, and
Leudeke
,
M.
,
2013
, “
Secondary Fuel Injection Layout Influences on DOC–DPF Active Regeneration Performance
,”
SAE
Paper No. 2013-01-2465.
13.
Parks
,
J.
,
Huff
,
S.
,
Kass
,
M.
, and
Storey
,
J.
,
2007
, “
Characterization of In-Cylinder Techniques for Thermal Management of Diesel Aftertreatment
,”
SAE
Paper No. 2007-01-3997.
14.
Chen
,
P.
, and
Wang
,
J.
,
2014
, “
Control-Oriented Model for Integrated Diesel Engine and Aftertreatment Systems Thermal Management
,”
Control Eng. Pract.
,
22
, pp.
81
93
.
15.
Kladopoulou
,
E. A.
,
Yang
,
S. L.
,
Johnson
,
J. H.
,
Parker
,
G. G.
, and
Konstandopoulos
,
A. G.
,
2003
, “
A Study Describing the Performance of Diesel Particulate Filters During Loading and Regeneration—A Lumped Parameter Model for Control Applications
,”
SAE
Paper No. 2003-01-0842.
16.
Song
,
Q.
, and
Zhu
,
G.
,
2002
, “
Model-Based Closed-Loop Control of Urea SCR Exhaust Aftertreatment System for Diesel Engine
,”
SAE
Paper No. 2002-01-0287.
17.
Zhang
,
H.
,
Wang
,
J.
, and
Wang
,
Y. Y.
,
2015
, “
Nonlinear Observer Design of Diesel Engine Selective Catalytic Reduction Systems With NOx Sensor Measurements
,”
IEEE/ASME Trans. Mechatronics
(in press).
18.
Schar
,
C.
,
Onder
,
C. H.
, and
Geering
,
H. P.
,
2006
, “
Control of an SCR Catalytic Converter System for a Mobile Heavy-Duty Application
,”
IEEE Trans. Control Syst. Technol.
,
14
(
4
), pp.
641
653
.
19.
Upadhyay
,
D.
, and
Van Nieuwstadt
,
M.
,
2006
, “
Model Based Analysis and Control Design of a Urea-SCR DeNOx Aftertreatment System
,”
ASME J. Dyn. Syst. Meas. Control
,
128
(
3
), pp.
737
741
.
20.
Zhang
,
H.
,
Chen
,
Y.
,
Wang
,
J.
, and
Yang
,
S.
,
2015
, “
Cycle-Based Optimal NOx Emission Control of Selective Catalytic Reduction Systems With Dynamic Programming Algorithm
,”
Fuel
,
141
, pp.
200
206
.
21.
Zhang
,
H.
,
Wang
,
J.
, and
Wang
,
Y. Y.
,
2015
, “
Cycle-Based Ammonia Coverage Ratio Reference Generators for Diesel Engine Two-Cell Selective Catalytic Reduction Systems Via a Fuzzy Approach
,”
Fuel,
159C
, pp.
76
83
.
22.
Willems
,
F.
, and
Cloudt
,
R.
,
2011
, “
Experimental Demonstration of a New Model-Based SCR Control Strategy for Cleaner Heavy-Duty Diesel Engines
,”
IEEE Trans. Control Syst. Technol.
,
19
(
5
), pp.
1305
1313
.
23.
Hsieh
,
M.
, and
Wang
,
J.
,
2011
, “
A Two-Cell Backstepping-Based Control Strategy for Diesel Engine Selective Catalytic Reduction Systems
,”
IEEE Trans. Control Syst. Technol.
,
19
(
6
), pp.
1504
1515
.
24.
Chen
,
P.
, and
Wang
,
J.
,
2014
, “
A Robust Ammonia Coverage Ratio Control Method for Two-Cell Selective Catalytic Reduction Systems in Low Temperature Operations
,”
2014 American Control Conference
(
ACC
),
Portland
,
OR
, June 4–6, pp.
2606
2611
.
25.
Chatterjee
,
D.
,
Burkhardt
,
T.
,
Rappe
,
T.
,
Güthenke
,
A.
, and
Weibel
,
M.
,
2008
, “
Numerical Simulation of DOC + DPF + SCR Systems: DOC Influence on SCR Performance
,”
SAE Int. J. Fuels Lubr.
,
1
(
1
), pp.
440
451
.
26.
Farrauto
,
R. J.
, and
Voss
,
K. E.
,
1996
, “
Monolithic Diesel Oxidation Catalysts
,”
Appl. Catal. B
,
10
(
1
), pp.
29
51
.
27.
Tanaka
,
Y.
,
Hihara
,
T.
,
Nagata
,
M.
,
Azuma
,
N.
, and
Ueno
,
A.
,
2005
, “
Modeling of Diesel Oxidation Catalyst
,”
Ind. Eng. Chem. Res.
,
44
(
22
), pp.
8205
8212
.
28.
Yamamoto
,
K.
,
Takada
,
K.
,
Kusaka
,
J.
,
Kanno
,
Y.
, and
Nagata
,
M.
,
2006
, “
Influence of Diesel Post Injection Timing on HC Emissions and Catalytic Oxidation Performance
,”
SAE
Paper No. 2006-1-3442.
29.
Chen
,
P.
,
Ibrahim
,
U.
, and
Wang
,
J.
,
2014
, “
Experimental Investigation of diesel and Biodiesel Post Injections During Active Diesel Particulate Filter Regenerations
,”
Fuel
,
130
, pp.
286
295
.
30.
Koebel
,
M.
,
Elsener
,
M.
, and
Kleemann
,
M.
,
2000
, “
Urea-SCR: A Promising Technique to Reduce NOx Emissions From Automotive Diesel Engines
,”
Catal. Today
,
59
(
3
), pp.
335
345
.
31.
Chen
,
P.
, and
Wang
,
J.
,
2013
, “
Nonlinear and Adaptive Control of NO/NO2 Ratio for Improving Selective Catalytic Reduction System Performance
,”
J. Franklin Inst.
,
350
(
8
), pp.
1992
2012
.
32.
Hsieh
,
M.
, and
Wang
,
J.
,
2011
, “
Development and Experimental Studies of a Control-Oriented SCR Model for a Two-Catalyst Urea-SCR System
,”
Control Eng. Pract.
,
19
(
4
), pp.
409
422
.
33.
Upadhyay
,
D.
, and
Van Nieuwstadt
,
M.
,
2002
, “
Modeling of a Urea SCR Catalyst With Automotive Applications
,”
ASME
Paper No. IMECE2002-32104.
34.
Guzzella
,
L.
, and
Onder
,
C. H.
,
2010
,
Introduction to Modeling and Control of Internal Combustion Engine Systems
,
Springer
,
Berlin
, Chap. 2.
35.
Song
,
X.
,
Johnson
,
J. H.
, and
Naber
,
J. D.
,
2014
, “
A Review of the Literature of Selective Catalytic Reduction Catalysts Integrated Into Diesel Particulate Filters
,”
Int. J. Engine Res.
, (in press).
36.
Chen
,
P.
, and
Wang
,
J.
,
2015
, “
Nonlinear Model Predictive Control of Integrated Diesel Engine and Selective Catalytic Reduction System for Simultaneous Fuel Economy Improvement and Emissions Reduction
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
8
), p.
081008
.
37.
Qin
,
S. J.
, and
Badgwell
,
T. A.
,
2003
, “
A Survey of Industrial Model Predictive Control Technology
,”
Control Eng. Pract.
,
11
(
7
), pp.
733
764
.
38.
Henson
,
M. A.
,
1998
, “
Nonlinear Model Predictive Control: Current Status and Future Directions
,”
Comput. Chem. Eng.
,
23
(
2
), pp.
187
202
.
39.
Frank
,
P. M.
,
1999
,
Advances in Control
,
Springer
,
London, UK
, Chap. 12.
40.
Morari
,
M.
, and
Lee
,
J. H.
,
1999
, “
Model Predictive Control: Past, Present and Future
,”
Comput. Chem. Eng.
,
23
(
4–5
), pp.
667
682
.
41.
Zhang
,
H.
,
Wang
,
J.
, and
Wang
,
Y. Y.
,
2014
, “
Optimization of the Ammonia Coverage Ratio References in Diesel Engine Two-Can Selective Catalytic Reduction Systems Via Nonlinear Model Predictive Control
,”
Proc. Inst. Mech. Eng. D
,
228
(
12
), pp.
1452
1467
.
42.
Yan
,
F.
,
Wang
,
J.
, and
Huang
,
K.
,
2012
, “
Hybrid Electric Vehicle Model Predictive Control Torque-Split Strategy Incorporating Engine Transient Characteristics
,”
IEEE Trans. Veh. Technol.
,
61
(
6
), pp.
2458
2467
.
43.
Hsieh
,
M.
,
Wang
,
J.
, and
Canova
,
M.
,
2010
, “
Two-Level Nonlinear Model Predictive Control for Lean NOx Trap Regenerations
,”
ASME J. Dyn. Syst. Meas. Control
,
132
(
4
), p.
041001
.
44.
Balenovic
,
M.
,
Backx
,
T.
, and
De Bie
,
T.
,
2002
, “
Development of a Model-Based Controller for a Three-Way Catalytic Converter
,”
SAE
Paper No. 2002-01-0475.
45.
Huang
,
X.
, and
Wang
,
J.
,
2012
, “
Model Predictive Regenerative Braking Control for Lightweight Electric Vehicles With In-Wheel Motors
,”
Proc. Inst. Mech. Eng. D
,
226
(
9
), pp.
1220
1232
.
46.
McKinley
,
T. L.
, and
Alleyne
,
A. G.
,
2012
, “
Adaptive Model Predictive Control of an SCR Catalytic Converter System for Automotive Applications
,”
IEEE Trans. Control Syst. Technol.
,
20
(
6
), pp.
1533
1547
.
47.
Westerlund
,
C.
,
Westerberg
,
B.
,
Odenbrand
,
I.
, and
Egnell
,
R.
,
2010
, “
Model Predictive Control of a Combined EGR/SCR HD Diesel Engine
,”
SAE
Paper No. 2010-01-1175.
48.
Chiang
,
C. J.
,
Kuo
,
C. L.
,
Huang
,
C. C.
, and
Lee
,
J. Y.
,
2010
, “
Model Predictive Control of SCR Aftertreatment System
,”
5th IEEE Conference on Industrial Electronics and Applications
(
ICIEA
),
Taichung
,
Taiwan
, June 15−17, pp.
2058
2063
.
This content is only available via PDF.
You do not currently have access to this content.