This paper deals with the problem of simultaneous compensation of the gain, phase, and phase-slope at an arbitrary frequency by using a fractional-order lead/lag compensator. The necessary and sufficient conditions for feasibility of the problem are derived. Also, the number of existing solutions (i.e., the number of distinct fractional-order lead/lag compensators satisfying the considered compensation requirements) is analytically found. Moreover, as a sample application, it is shown that the obtained results for the considered compensation problem are helpful in tuning fractional-order lead/lag compensators for simultaneously achieving desired phase margin, desired gain cross frequency, and flatness of the Bode phase plot of the loop transfer function at this frequency.

References

1.
Monje
,
C. A.
,
Chen
,
Y. Q.
,
Vinagre
,
B. M.
,
Xue
,
D.
, and
Feliu
,
V.
,
2010
,
Fractional-Order Systems and Controls—Fundamentals and Applications
,
Springer
,
Heidelberg, Germany
.
2.
Caponetto
,
R.
,
Dongola
,
G.
,
Fortuna
,
L.
, and
Petras
,
I.
,
2010
,
Fractional Order Systems: Modeling and Control Applications
,
World Scientific
,
Singapore
.
3.
Luo
,
Y.
, and
Chen
,
Y. Q.
,
2012
,
Fractional Order Motion Controls
,
Wiley
,
New York
.
4.
Efe
,
M. Ö.
,
2011
, “
Fractional Order Systems in Industrial Automation—A Survey
,”
IEEE Trans. Ind. Inf.
,
7
(
4
), pp.
582
591
.
5.
Tavazoei
,
M. S.
,
2012
, “
From Traditional to Fractional PI Control: A Key for Generalization
,”
IEEE Ind. Electron. Mag.
,
6
(
3
), pp.
41
51
.
6.
Tavazoei
,
M. S.
,
2014
, “
Time Response Analysis of Fractional-Order Control Systems: A Survey on Recent Results
,”
Fractional Calculus Appl. Anal.
,
17
(
2
), pp.
440
461
.
7.
Wang
,
D. J.
, and
Gao
,
X. L.
,
2012
, “
H∞ Design With Fractional-Order PDμ Controllers
,”
Automatica
,
48
(
5
), pp.
974
977
.
8.
Badri
,
V.
, and
Tavazoei
,
M. S.
,
2013
, “
On Tuning Fractional Order [Proportional–Derivative] Controllers for a Class of Fractional Order Systems
,”
Automatica
,
49
(
7
), pp.
2297
2301
.
9.
Djennoune
,
S.
, and
Bettayeb
,
M.
,
2013
, “
Optimal Synergetic Control for Fractional-Order Systems
,”
Automatica
,
49
(
7
), pp.
2243
2249
.
10.
Badri
,
V.
, and
Tavazoei
,
M. S.
,
2013
, “
On Tuning FO[PI] Controllers for FOPDT Processes
,”
Electron. Lett.
,
49
(
21
), pp.
1326
1328
.
11.
Padula
,
F.
, and
Visioli
,
A.
,
2014
,
Advances in Robust Fractional Control
,
Springer
,
Heidelberg, Germany
.
12.
Podlubny
,
I.
,
1999
, “
Fractional-Order Systems and PIλDμ-Controllers
,”
IEEE Trans. Autom. Control
,
44
(
1
), pp.
208
214
.
13.
Tavazoei
,
M. S.
, and
Tavakoli-Kakhki
,
M.
,
2014
, “
Compensation by Fractional-Order Phase-Lead/Lag Compensators
,”
IET Control Theory Appl.
,
8
(
5
), pp.
319
329
.
14.
Bonnet
,
C.
, and
Partington
,
J. R.
,
2000
, “
Coprime Factorizations and Stability of Fractional Differential Systems
,”
Syst. Control Lett.
,
41
(
3
), pp.
167
174
.
15.
Anton
,
H.
,
1999
,
Calculus: A New Horizon
, 6th ed.,
Wiley
,
New York
.
16.
Ogata
,
K.
,
2002
,
Modern Control Engineering
, 4th ed.,
Prentice-Hall
,
Upper Saddle River, NJ
.
17.
Chen
,
Y. Q.
, and
Kevin
,
L. M.
,
2005
, “
Relay Feedback Tuning of Robust PID Controllers With Iso-Damping
,”
Trans. Syst. Man Cybern., Part B
,
35
(
1
), pp.
23
31
.
18.
Luo
,
Y.
, and
Chen
,
Y. Q.
,
2009
, “
Fractional Order [Proportional Derivative] Controller for a Class of Fractional Order Systems
,”
Automatica
,
45
(
10
), pp.
2446
2450
.
19.
Luo
,
Y.
, and
Chen
,
Y. Q.
,
2012
, “
Stabilizing and Robust Fractional Order PI Controller Synthesis for First Order Plus Time Delay Systems
,”
Automatica
,
48
(
9
), pp.
2159
2167
.
20.
Wang
,
Q. G.
,
Ye
,
Z.
, and
Hang
,
C. C.
,
2006
, “
Tuning of Phase-Lead Compensators for Exact Gain and Phase Margins
,”
Automatica
,
42
(
2
), pp.
349
352
.
21.
Zhang
,
R.
,
Xue
,
A.
, and
Gao
,
F.
,
2014
, “
Temperature Control of Industrial Coke Furnace Using Novel State Space Model Predictive Control
,”
IEEE Trans. Ind. Inf.
,
10
(
4
), pp.
2084
2092
.
You do not currently have access to this content.