Engagement control of automated clutch is essential during launching process for a vehicle equipped with an automated manual transmission (AMT), and instantaneous changes in the driver's launching intention make it more complicated to control the clutch. This paper studies the identification of the driver's launching intentions, which may change anytime, and proposes a clutch engagement control method for vehicle launching. First, a launching-intention-aware machine (LIAM) based on artificial neural network (ANN) is designed for real-time tracking and identifying the driver's launching intentions. Second, the optimal engagement strategy for different launching intentions is deduced based on the linear quadratic regulator (LQR), which figures out a compromise between friction loss, vehicle shock, engine speed, clutch speed, and desired vehicle speed. Third, the relationship between transmitted torque and clutch position is obtained by experiments, and a sliding-mode controller (SMC) is designed for clutch engagement. Finally, the clutch engagement control strategy is validated by a joint simulation model and an experiment bench. The results show that the control strategy reflects the driver's launching intentions correctly and improves the performance of vehicle launching.

References

1.
Myklebust
,
A.
, and
Eriksson
,
L.
,
2015
, “
Modeling, Observability, and Estimation of Thermal Effects and Aging on Transmitted Torque in a Heavy Duty Truck With a Dry Clutch
,”
IEEE/ASME Trans. Mechatronics
,
20
(
1
), pp.
61
72
.
2.
Li
,
L.
,
Wang
,
X.
,
Hu
,
X.
,
Chen
,
Z.
,
Song
,
J.
, and
Muhammad
,
F.
,
2016
, “
A Modified Predictive Functional Control With Sliding Mode Observer for Automated Dry Clutch Control of Vehicle
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
6
), p.
061005
.
3.
Li
,
L.
,
Yang
,
C.
,
Zhang
,
Y.
,
Zhang
,
L.
, and
Song
,
J.
,
2015
, “
Correctional DP-Based Energy Management Strategy of Plug-In Hybrid Electric Bus for City-Bus-Route
,”
IEEE Trans. Veh. Technol.
,
64
(
7
), pp.
2792
2803
.
4.
Dongsuk
,
K.
,
Peng
,
H.
, and
Bucknor
,
N.
,
2013
, “
Control of Engine-Starts for Optimal Drivability of Parallel Hybrid Electric Vehicles
,”
ASME J. Dyn. Syst., Meas., Control
,
113
, p.
021020
.
5.
Yang
,
C.
,
Jiao
,
X.
,
Li
,
L.
,
Zhang
,
Y.
,
Zhang
,
L.
, and
Song
,
J.
,
2015
, “
Robust Coordinated Control for Hybrid Electric Bus With Single-Shaft Parallel Hybrid Powertrain
,”
IET Control Theory Appl.
,
9
(
2
), pp.
270
282
.
6.
Zhao
,
B. Z.
,
Chen
,
H.
,
Yang
,
Y.
, and
He
,
L.
,
2015
, “
Torque Coordinating Robust Control of Shifting Process for Dry Dual Clutch Transmission Equipped in a Hybrid Car
,”
Veh. Syst. Dyn.
,
53
(
9
), pp.
1269
1295
.
7.
Li
,
L.
,
Zhu
,
Z.
,
Wang
,
X.
,
Yang
,
Y.
,
Yang
,
C.
, and
Song
,
J.
,
2015
, “
Identification of a Driver's Starting Intention Based on an Artificial Neural Network for Vehicles Equipped With an Automated Manual Transmission
,”
Proc. Inst. Mech. Eng., Part D
,
230
(
10
), pp.
1417
1429
.
8.
Dai
,
F.
,
Zhang
,
J. W.
, and
Lu
,
T. L.
,
2012
, “
Modelling and Recognition of a Driver's Starting Intentions
,”
Proc. Inst. Mech. Eng., Part D
,
226
(
5
), pp.
623
633
.
9.
Jin
,
T.
,
Li
,
P.
, and
Zhu
,
G.
,
2013
Optimal Decoupled Control for Dry Clutch Engagement
,”
American Control Conference
(
ACC
), IEEE, June 17–19, pp.
6740
6745
.
10.
Van der Heijden
,
A. C.
,
Serrarens
,
A. F. A.
,
Camlibel
,
M. K.
, and
Nijmeijer
,
H.
,
2007
, “
Hybrid Optimal Control of Dry Clutch Engagement
,”
Int. J. Control
,
80
(
11
), pp.
1717
1728
.
11.
Pisaturo
,
M.
,
Cirrincione
,
M.
, and
Senatore
,
A.
,
2014
, “
Multiple Constrained MPC Design for Automotive Dry Clutch Engagement
,”
IEEE/ASME Trans. Mechatron.
,
20
(
1
), pp.
469
480
.
12.
Li
,
L.
,
Wang
,
X. Y.
,
Qi
,
X. W.
,
Li
,
X. J.
,
Cao
,
D. P.
, and
Zhu
,
Z. B.
,
2016
, “
Automatic Clutch Control Based on Estimation of Resistance Torque for AMT
,”
IEEE/ASME Trans. Mechatron.
,
PP
(
99
), p.
1
.
13.
Wang
,
X.
,
Xie
,
X.
,
Wu
,
X.
, and
Yu
,
T.
,
2008
, “
Precise Position Tracking Control Based on Adaptive Neuron PID Algorithm for Automatic Clutch Driven by DC Motor
,”
IEEE Vehicle Power and Propulsion Conference
(
VPPC
), Sept. 3–5, Vol.
1
, pp.
1
4
.
14.
Wang
,
T.
,
Zhang
,
Y.
,
Qiu
,
J.
, and
Gao
,
H.
,
2015
, “
Adaptive Fuzzy Back Stepping Control for a Class of Nonlinear Systems With Sampled and Delayed Measurements
,”
IEEE Trans. Fussy Syst.
,
23
(
2
), pp.
302
312
.
15.
Gao
,
B.
,
Chen
,
H.
,
Sanada
,
K.
, and
Hu
,
Y.
,
2011
, “
Design of Clutch-Slip Controller for Automatic Transmission Using Backstepping
,”
IEEE/ASME Trans. Mechatron.
,
16
(
3
), pp.
498
508
.
16.
Yedavalli
,
R. K.
, and
Huang
,
H. H.
,
2010
, “
Rollover Prevention of Multi-Body Ground Vehicles Extending LQR Design for Control Coupled Output Regulation
,”
ASME
Paper No. DSCC2010-4277.
17.
Amini
,
F.
,
Hazaveh
,
N. K.
, and
Rad
,
A. A.
,
2013
, “
Wavelet PSO-Based LQR Algorithm for Optimal Structural Control Using Active Tuned Mass Dampers
,”
Comput.-Aided Civ. Infrastruct. Eng.
,
28
(
7
), pp.
542
557
.
18.
Tang
,
Y.
,
Wang
,
Y.
,
Han
,
M.
, and
Lian
,
Q.
,
2016
, “
Adaptive Fuzzy Fractional-Order Sliding Mode Controller Design for Antilock Braking Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
138
(
4
), p.
041008
.
19.
Li
,
L.
,
Li
,
X. J.
,
Wang
,
X. Y.
,
Liu
,
Y. H.
,
Song
,
J.
, and
Ran
,
X.
,
2016
, “
Transient Switching Control Strategy From Regenerative Braking to Anti-Lock Braking With a Semi-Brake-by-Wire System
,”
Veh. Syst. Dyn.
,
54
(
2
), pp.
231
257
.
20.
Li
,
J.
,
Song
,
Z.
,
Shuai
,
Z.
,
Xu
,
L.
, and
Ouyang
,
M.
,
2015
, “
Wheel Slip Control Using Sliding-Mode Technique and Maximum Transmissible Torque Estimation
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
11
), p.
111010
.
21.
Atia
,
M. R. A.
,
Haggag
,
S. A.
, and
Kamal
,
A. M. M.
,
2016
, “
Enhanced Electromechanical Brake-by-Wire System Using Sliding Mode Controller
,”
ASME J. Dyn. Syst., Meas., Control
,
138
(
4
), p.
041003
.
22.
Lu
,
X.
,
Wang
,
P.
,
Gao
,
B.
, and
Chen
,
H.
,
2011
, “
Model Predictive Control of AMT Clutch During Start-Up Process
,”
Chinese Control and Decision Conference
(
CCDC
), IEEE, May 23–25, pp.
3204
3209
.
23.
D'Agostino
,
V.
,
Cappetti
,
N.
,
Pisaturo
,
M.
, and
Senatore
,
A.
,
2012
, “
Improving the Engagement Smoothness Through Multi-Variable Frictional Map in Automated Dry Clutch Control
,”
ASME
Paper No. IMECE2012-85945.
24.
Cappetti
,
N.
,
Pisaturo
,
M.
, and
Senatore
,
A.
,
2012
, “
Modelling the Cushion Spring Characteristic to Enhance the Automated Dry-Clutch Performance: The Temperature Effect
,”
Proc. Inst. Mech. Eng., Part D
,
226
(
11
), pp.
1472
1482
.
25.
Vasca
,
F.
,
Iannelli
,
L.
,
Senatore
,
A.
, and
Reale
,
G.
,
2011
, “
Torque Transmissibility Assessment for Automotive Dry-Clutch Engagement
,”
IEEE/ASME Trans. Mechatronics
,
16
(
3
), pp.
564
573
.
26.
Wang
,
Y. Y.
,
Li
,
Y. N.
,
Sun
,
W.
, and
Zheng
,
L.
,
2015
, “
Effect of the Unbalanced Vertical Force of a Switched Reluctance Motor on the Stability and the Comfort of an In-Wheel Motor Electric Vehicle
,”
Proc. Inst. Mech. Eng., Part D
,
229
(
12
), pp.
1569
1584
.
27.
Pisaturo
,
M.
, and
Senatore
,
A.
,
2016
, “
Simulation of Engagement Control in Automotive Dry-Clutch and Temperature Field Analysis Through Finite Element Model
,”
Appl. Therm. Eng.
,
93
, pp.
958
966
.
28.
Kim
,
J.
, and
Choi
,
S. B.
,
2010
, “
Control of Dry Clutch Engagement for Vehicle Launches Via a Shaft Torque Observer
,”
American Control Conference
(
ACC
), June 30–July 2, pp.
676
681
.
29.
Gao
,
B.
,
Chen
,
H.
,
Li
,
J.
, and
Tian
,
L.
,
2012
, “
Observer-Based Feedback Control During Torque Phase of Clutch-to-Clutch Shift Process
,”
Int. J. Veh. Des.
,
58
(
1
), pp.
93
108
.
30.
Slotine
,
J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice-Hall
,
Upper Saddle River, NJ
.
31.
Chern
,
T. L.
, and
Wu
,
Y. C.
,
1991
, “
Design of Integral Variable Structure Controller and Application to Electrohydraulic Velocity Servosystems
,”
IEE Proc.-D: Control Theory Appl.
,
138
(
5
), pp.
439
444
.
32.
Kang
,
M. X.
,
Li
,
L.
,
Li
,
H. Z.
,
Song
,
J.
, and
Han
,
Z. Q.
,
2012
, “
Coordinated Vehicle Traction Control Based on Engine Torque and Brake Pressure Under Complicated Road Conditions
,”
Veh. Syst. Dyn.
,
50
(
9
), pp.
1473
1494
.
33.
Fan
,
Q.-Y.
, and
Yang
,
G.-H.
,
2016
, “
Adaptive Actor–Critic Design-Based Integral Sliding-Mode Control for Partially Unknown Nonlinear Systems With Input Disturbances
,”
IEEE Trans. Neural Networks Learn. Syst.
,
27
(
1
), pp.
165
177
.
You do not currently have access to this content.