This paper considers the problem of robust output regulation of nonlinear systems in semi strict-feedback form in the presence of model uncertainties and nonvanishing disturbances. In the proposed procedure, two exosystems are considered to generate the disturbance and reference signals. In order to reduce both the conservatism of the control law and the chattering phenomena, a disturbance observer is designed for disturbance estimation instead of assuming the known upper bound for the disturbance. Moreover, a novel sliding surface is designed based on the tracking error to guarantee that the output of the system tracks the output of the exosystem. In this regard, some theorems are given and according to the Lyapunov approach, it is proved that the robust output regulation is guaranteed in the presence of model uncertainties and external disturbances. Finally, in order to show the applicability of the proposed controller, it is applied to the Van der Pol chaotic oscillator. Computer simulations verify the theoretical results and also show the effective performance of the proposed controller.

References

1.
Huang
,
J.
,
2004
,
Nonlinear Output Regulation: Theory and Applications
,
SIAM
,
Philadelphia, PA
.
2.
Chen
,
H.
,
Zhang
,
B.
,
Zhao
,
T.
,
Wang
,
T.
, and
Li
,
K.
,
2016
, “
Finite-Time Tracking Control for Extended Nonholonomic Chained-Form Systems With Parametric Uncertainty and External Disturbance
,”
J. Vib. Control
, epub.
3.
Lu
,
M.
, and
Haung
,
J.
,
2015
, “
Robust Output Regulation Problem for Linear Time-Delay Systems
,”
Int. J. Control
,
88
(
6
), pp.
1236
1245
.
4.
Mobayen
,
S.
,
2016
, “
Finite-Time Robust-Tracking and Model-Following Controller for Uncertain Dynamical Systems
,”
J. Vib. Control
,
22
(
4
), pp.
1117
1127
.
5.
Feng
,
G.
, and
Zhang
,
T. J.
,
2006
, “
Output Regulation of Discrete-Time Piecewise-Linear Systems With Application to Controlling Chaos
,”
IEEE Trans. Circuits Syst. II
,
53
(
4
), pp.
249
253
.
6.
Chu
,
X.
, and
Lan
,
W.
,
2014
, “
Composite Nonlinear Feedback Control for Output Regulation Problem of Linear Discrete-Time Systems With Input Saturation
,”
J. Syst. Eng. Electron.
,
25
(
6
), pp.
1043
1055
.
7.
Huang
,
J.
, and
Lin
,
C. F.
,
1994
, “
A Stability Property and Its Application to Discrete-Time Nonlinear System Control
,”
IEEE Trans. Autom. Control
,
39
(
11
), pp.
2307
2311
.
8.
Hakimi
,
A. R.
, and
Binazadeh
,
T.
,
2017
, “
Robust Generation of Limit Cycles in Nonlinear Systems: Application on Two Mechanical Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
4
), p.
041013
.
9.
Binazadeh
,
T.
, and
Bahmani
,
M.
,
2017
, “
Design of Robust Controller for a Class of Uncertain Discrete-Time Systems Subject to Actuator Saturation
,”
IEEE Trans. Autom. Control
,
62
(
3
), pp.
1505
1510
.
10.
Binazadeh
,
T.
, and
Shafiei
,
M. H.
,
2014
, “
Robust Stabilization of Uncertain Nonlinear Slowly-Varying Systems: Application in a Time-Varying Inertia Pendulum
,”
ISA Trans.
,
53
(
2
), pp.
373
379
.
11.
Mobayen
,
S.
,
2015
, “
An Adaptive Fast Terminal Sliding Mode Control Combined With Global Sliding Mode Scheme for Tracking Control of Uncertain Nonlinear Third-Order Systems
,”
Nonlinear Dyn.
,
82
(
1–2
), pp.
599
610
.
12.
Binazadeh
,
T.
, and
Yousefi
,
M.
,
2017
, “
Designing a Cascade-Control Structure Using Fractional-Order Controllers: Time Delay Fractional-Order Proportional-Derivative Controller and Fractional-Order Sliding-Mode Controller
,”
ASCE J. Eng. Mech.
,
143
(
7
).
13.
Shafiei
,
M. H.
, and
Binazadeh
,
T.
,
2013
, “
Application of Partial Sliding Mode in Guidance Problem
,”
ISA Trans.
,
52
(
2
), pp.
192
197
.
14.
Yousefi
,
M.
, and
Binazadeh
,
T.
,
2016
, “
Delay-Independent Sliding Mode Control of Time-Delay Linear Fractional Order Systems
,”
Trans. Inst. Meas. Control.
, epub.
15.
Mobayen
,
S.
,
Baleanu
,
D.
, and
Tchier
,
F.
,
2016
, “
Second-Order Fast Terminal Sliding Mode Control Design Based on LMI for a Class of Non-Linear Uncertain Systems and Its Application to Chaotic Systems
,”
J. Vib. Control
, epub.
16.
Binazadeh
,
T.
,
2016
, “
Finite-Time Tracker Design for Uncertain Nonlinear Fractional-Order Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041028
.
17.
Mobayen
,
S.
,
2015
, “
Finite-Time Tracking Control of Chained-Form Nonholonomic Systems With External Disturbances Based on Recursive Terminal Sliding Mode Method
,”
Nonlinear Dyn.
,
80
(
1–2
), pp.
669
683
.
18.
Wei
,
X. J.
,
Zhang
,
G. F.
, and
Guo
,
L.
,
2009
, “
Composite Disturbance-Observer Based Control and Terminal Sliding Mode Control for Uncertain Structural Systems
,”
Int. J. Syst. Sci.
,
40
(
10
), pp.
1009
1017
.
19.
Wu
,
S. N.
,
Sun
,
X. Y.
,
Sun
,
Z. W.
, and
Wu
,
X. D.
,
2010
, “
Sliding-Mode Control for Staring-Mode Spacecraft Using a Disturbance Observer
,”
Proc. Inst. Mech. Eng. Part G
,
224
(
2
), pp.
215
224
.
20.
Yang
,
J.
,
Li
,
S.
, and
Yu
,
X.
,
2013
, “
Sliding-Mode Control for Systems With Mismatched Uncertainties Via a Disturbance Observer
,”
IEEE Trans. Ind. Electron.
,
60
(
1
), pp.
160
169
.
21.
Binazadeh
,
T.
, and
Shafiei
,
M. H.
,
2014
, “
A Novel Approach in the Finite-Time Controller Design
,”
Syst. Sci. Control Eng.
,
2
(
1
), pp.
119
124
.
22.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
, 3rd ed.,
Prentice Hall
,
Upper Saddle River, NJ
.
23.
Bhat
,
S. P.
, and
Bernstein
,
D. S.
,
2000
, “
Finite-Time Stability of Continuous Autonomous Systems
,”
SIAM J. Control Optim.
,
38
(
3
), pp.
751
766
.
24.
Chen
,
W. H.
,
2004
, “
Disturbance Observer Based Control for Nonlinear Systems
,”
IEEE/ASME Trans. Mechatronics.
,
9
(
4
), pp.
706
710
.
25.
Isidori
,
A.
,
1995
,
Nonlinear Control Systems
,
Springer-Verlag
,
London
.
26.
Guo
,
L.
, and
Chen
,
W. H.
,
2005
, “
Disturbance Attenuation and Rejection for Systems With Nonlinearity via DOBC Approach
,”
Int. J. Robust Nonlinear Control
,
15
(
3
), pp.
109
125
.
27.
Sun
,
H.
, and
Guo
,
L.
,
2014
, “
Output Regulation Control for MIMO Nonlinear System With Mismatched Disturbances and Its Application to BTT Missiles
,” 11th World Congress on Intelligent Control and Automation (
WCICA
), Shenyang, China, June 29–July 4, pp.
1130
1136
.
28.
Chenarani
,
H.
, and
Binazadeh
,
T.
,
2017
, “
Flexible Structure Control of Unmatched Uncertain Nonlinear Systems Via Passivity-Based Sliding Mode Technique
,”
Iran. J. Sci. Technol.
, epub.
29.
Vaidyanathan
,
S.
,
2015
, “
Adaptive Chaotic Synchronization of Enzymes-Substrates System With Ferroelectric Behaviour in Brain Waves
,”
Int. J. PharmTech Res.
,
8
(
5
), pp.
964
973
.
30.
Adhami-Mirhosseini
,
A.
,
Yazdanpanah
,
M. J.
, and
Khaki-Sedigh
,
A.
,
2012
, “
Robust Tracking of a Class of Perturbed Nonlinear Systems Via Multivariable Nested Sliding Mode Control
,”
ASME J. Dyn. Syst. Meas. Control
,
134
(
3
), p.
031004
.
You do not currently have access to this content.