This paper concerns the problems of stability and robust model reference tracking control for a class of switched nonlinear systems with input delay under asynchronous switching. By proposing a new Lyapunov–Krasovskii functional, and using free-weighting matrices and average dwell-time (ADT) technique, new input-to-state stability (ISS) conditions are derived in terms of linear matrix inequalities (LMIs) under a certain delay bound. Then, robust model reference tracking control problem is studied based on the proposed Lyapunov–Krasovskii functional; Finally a kind of state feedback control law which guarantees robust model reference tracking performance is proposed. Illustrative examples are presented to demonstrate the efficacy and feasibility of results.

References

1.
Dong
,
C. Y.
,
Li
,
W.
, and
Wang
,
Q.
,
2013
, “
H∞ Control of Switched Systems With Nonideal Switchings and Its Application to Morphing Aircraft
,”
Procedia Eng.
,
67
, pp.
100
109
.
2.
Huang
,
R.
,
Zhang
,
J.
, and
Zhang
,
X.
,
2016
, “
Adaptive Tracking Control of Uncertain Switched Nonlinear Systems With Application to Aircraft Wing Rock
,”
IET Control Theory Appl.
,
10
(
15
), pp.
1755
1762
.
3.
Chen
,
S.
,
Jiang
,
L.
,
Yao
,
W.
, and
Wu
,
Q. H.
,
2014
, “
Application of Switched System Theory in Power System Stability
,”
49th International Universities Power Engineering Conference
(
UPEC
), Cluj-Napoca, Romania, Sept. 2–5, pp.
1
6
.
4.
Zong
,
G. D.
,
Ren
,
H. L.
, and
Hou
,
L. L.
,
2016
, “
Finite-Time Stability of Interconnected Impulsive Switched Systems
,”
IET Control Theory Appl.
,
10
(
6
), pp.
648
654
.
5.
Lin
,
H.
, and
Antsaklis
,
P. J.
,
2009
, “
Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results
,”
IEEE Trans. Autom. Control
,
54
(
2
), pp.
308
322
.
6.
Hespanha
,
J. P. S.
, and
Morse
,
A.
,
2002
, “
Switching Between Stabilizing Controllers
,”
Automatica
,
38
(
11
), pp.
1905
1917
.
7.
Ma
,
R.
, and
Zhao
,
J.
,
2010
, “
Backstepping Design for Global Stabilization of Switched Nonlinear Systems in Lower Triangular Form Under Arbitrary Switchings
,”
Automatica
,
46
(11), pp.
1819
1823
.
8.
Aleksandrov
,
A. Y.
,
Chen
,
Y.
,
Platonov
,
A. V.
, and
Zhang
,
L.
,
2011
, “
Stability Analysis for a Class of Switched Nonlinear Systems
,”
Automatica
,
47
(10), pp.
2286
2291
.
9.
Zhao
,
X.
,
Zhang
,
L.
,
Shi
,
P.
, and
Liu
,
M.
,
2012
, “
Stability of Switched Positive Linear Systems With Average Dwell Time Switching
,”
Automatica
,
48
(6), pp.
1132
1137
.
10.
Zhang
,
J.
,
Han
,
Z.
,
Zhu
,
F.
, and
Zhao
,
X.
,
2014
, “
Absolute Exponential Stability and Stabilization of Switched Nonlinear Systems
,”
Syst. Control Lett.
,
66
, pp.
51
57
.
11.
Mahmoud
,
M. S.
,
2010
,
Switched Time-Delay Systems: Stability and Control
,
Springer Press
,
Boston, MA
.
12.
Liu
,
J.
,
Liu
,
X. Z.
, and
Xie
,
W. C.
,
2008
, “
Delay-Dependent Robust Control for Uncertain Switched Systems With Time-Delay
,”
Nonlinear Anal.: Hybrid Syst.
,
2
(
1
), pp.
81
95
.
13.
Zamani
,
I.
,
Shafiee
,
M.
, and
Ibeas
,
A.
,
2013
, “
Exponential Stability of Hybrid Switched Nonlinear Singular Systems With Time-Varying Delay
,”
J. Franklin Inst.
,
350
(
1
), pp.
171
193
.
14.
Wang
,
X. H.
,
Zong
,
G. D.
, and
Sun
,
H.
,
2016
, “
Asynchronous Finite-Time Dynamic Output Feedback Control for Switched Time-Delay Systems With Non-Linear Disturbances
,”
IET Control Theory Appl.
,
10
(
10
), pp.
1142
1150
.
15.
Liu
,
H.
,
Shen
,
Y.
, and
Zhao
,
X.
,
2013
, “
Asynchronous Finite-Time H∞ Control for Switched Linear Systems Via Mode-Dependent Dynamic State-Feedback
,”
Nonlinear Anal.: Hybrid Syst.
,
8
, pp.
109
120
.
16.
Ma
,
D.
, and
Zhao
,
J.
,
2015
, “
Stabilization of Networked Switched Linear Systems: An Asynchronous Switching Delay System Approach
,”
Syst. Control Lett.
,
77
, pp.
46
54
.
17.
Wang
,
Y. E.
,
Wu
,
B. W.
, and
Wu
,
C.
,
2017
, “
Stability and L2-Gain Analysis of Switched Input Delay Systems With Unstable Modes Under Asynchronous Switching
,”
J. Franklin Inst.
,
354
(
11
), pp.
4481
4497
.
18.
Li
,
Q. K.
,
Zhao
,
J.
,
Liu
,
X. J.
, and
Dimirovski
,
G. M.
,
2011
, “
Observer-Based Tracking Control for Switched Linear Systems With Time-Varying Delay
,”
Int. J. Robust Nonlinear Control
,
21
(
3
), pp.
309
327
.
19.
Xiang
,
Z. R.
,
Liu
,
S. L.
, and
Chen
,
Q. W.
,
2013
, “
Tracking Control for a Class of Switched Non-Linear Systems With Time-Varying Delay
,”
Trans. Inst. Meas. Control
,
35
(
3
), pp.
398
406
.
20.
Lian
,
J.
, and
Ge
,
Y. L.
,
2013
, “
Robust H∞ Output Tracking Control for Switched Systems Under Asynchronous Switching
,”
Nonlinear Anal.: Hybrid Syst.
,
8
, pp.
57
68
.
21.
Liberzon
,
D.
,
2003
,
Switching in Systems and Control
,
Birkhäuser
,
Boston, MA
.
22.
Malisoff
,
M.
, and
Mazenc
,
F.
,
2009
,
Constructions of Strict Lyapunov Functions
,
Springer-Verlag
,
London
.
23.
Mazenc
,
F.
,
Malisoff
,
M.
, and
Lin
,
Z. L.
,
2008
, “
Further Results on Input-to-State Stability for Nonlinear Systems With Delayed Feedbacks
,”
Automatica
,
44
(
9
), pp.
2415
2421
.
24.
Zhai
,
J.-Y.
,
Wang
,
B.
, and
Fei
,
S. M.
,
2015
, “
Tracking Control for Switched Nonlinear Systems With Multiple Time-Varying Delays
,”
Nonlinear Anal.: Hybrid Syst.
,
17
, pp.
44
55
.
25.
Wang
,
Y. E.
,
Sun
,
X. M.
, and
Wu
,
B. W.
,
2015
, “
Lyapunov–Krasovskii Functionals for Switched Nonlinear Input Delay Systems Under Asynchronous Switching
,”
Automatica
,
61
, pp.
126
133
.
26.
Sun
,
Z. D.
, and
Ge
,
S. S.
,
2005
,
Switched Linear Systems: Control and Design
,
Springer-Verlag
,
London
.
You do not currently have access to this content.