The consensus problem for multiple Euler–Lagrange systems has been extensively studied under various assumptions on the connectivity of the communication graph. In practice, it is desirable to enable the control law the capability of maintaining the connectivity of the communication graph, thus achieving consensus without assuming the connectivity of the communication graph. We call such a problem as consensus with connectivity preservation. In this paper, we will study this problem for multiple uncertain Euler–Lagrange systems. By combining the adaptive control technique and potential function technique, we will show that such a problem is solvable under a set of standard assumptions. By employing different potential functions, our approach will also lead to the solution of such problems as rendezvous and flocking.

References

1.
Cheah
,
C. C.
,
Hou
,
S. P.
, and
Slotine
,
J. J. E.
,
2009
, “
Region-Based Shape Control for a Swarm of Robots
,”
Automatica
,
45
(
10
), pp.
2406
2411
.
2.
Spong
,
M. W.
, and
Vidyasagar
,
M.
,
1989
,
Robot Dynamics and Control
,
Wiley
,
New York
.
3.
Wang
,
H.
,
2012
, “
Recursive Composite Adaptation for Robot Manipulators
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
2
), p.
021010
.
4.
Slotine
,
J. J.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
,
Upper Saddle River, NJ
.
5.
Liu
,
Y.
, and
Chopra
,
N.
,
2013
, “
Synchronization of Networked Mechanical Systems With Communication Delays and Human Input
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
4
), p.
041004
.
6.
Nuño
,
E.
,
Ortega
,
R.
,
Basañez
,
L.
, and
Hill
,
D.
,
2011
, “
Synchronization of Networks of Nonidentical Euler-Lagrange Systems With Uncertain Parameters and Communication Delays
,”
IEEE Trans. Autom. Control
,
56
(
4
), pp.
935
941
.
7.
Ren
,
W.
,
2009
, “
Distributed Leaderless Consensus Algorithms for Networked Euler-Lagrange Systems
,”
Int. J. Control
,
82
(
11
), pp.
2137
2149
.
8.
Wang
,
L.
,
Meng
,
B.
, and
Wang
,
H.
,
2013
, “
Adaptive Task-Space Synchronization of Networked Robotic Agents Without Task-Space Velocity Measurements
,”
Int. J. Control
,
87
(
2
), pp.
384
392
.
9.
Liu
,
Y.
,
Min
,
H.
,
Wang
,
S.
,
Liu
,
Z.
, and
Liao
,
S.
,
2014
, “
Distributed Adaptive Consensus for Multiple Mechanical Systems With Switching Topologies and Time-Varying Delay
,”
Syst. Control Lett.
,
64
, pp.
119
126
.
10.
Mehrabian
,
A. R.
, and
Khorasani
,
K.
,
2015
, “
Cooperative Optimal Synchronization of Networked Uncertain Nonlinear Euler-Lagrange Heterogeneous Multi-Agent Systems With Switching Topologies
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(4), p.
041006
.
11.
Min
,
H.
,
Liu
,
Z.
,
Liu
,
Y.
,
Wang
,
S.
, and
Yang
,
Y.
,
2013
, “
Coordination Control of Networked Euler-Lagrange Systems With Possible Switching Topology
,”
Acta Autom. Sin.
,
39
(
7
), pp.
1003
1010
.
12.
Min
,
H.
,
Sun
,
F.
,
Wang
,
S.
, and
Li
,
H.
,
2011
, “
Distributed Adaptive Consensus Algorithm for Networked Euler-Lagrange Systems
,”
IET Control Theory Appl.
,
5
(
1
), pp.
145
154
.
13.
Dong
,
Y.
, and
Huang
,
J.
,
2014
, “
Cooperative Global Robust Output Regulation for Nonlinear Multi-Agent Systems in Output Feedback Form
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(3), p.
031001
.
14.
Cao
,
Y.
, and
Ren
,
W.
,
2012
, “
Distributed Coordinated Tracking With Reduced Interaction Via a Variable Structure Approach
,”
IEEE Trans. Autom. Control
,
57
(
1
), pp.
33
48
.
15.
Dimarogonas
,
D. V.
, and
Johansson
,
K. H.
,
2010
, “
Bounded Control of Network Connectivity in Multi-Agent Systems
,”
IET Control Theory Appl.
,
4
(
8
), pp.
1330
1338
.
16.
Ji
,
M.
, and
Egerstedt
,
M.
,
2007
, “
Distributed Coordination Control of Multiagent Systems While Preserving Connectedness
,”
IEEE Trans. Rob.
,
23
(
4
), pp.
693
703
.
17.
Dong
,
Y.
, and
Huang
,
J.
,
2013
, “
A Leader-Following Rendezvous Problem of Double Integrator Multi-Agent Systems
,”
Automatica
,
49
(
5
), pp.
1386
1391
.
18.
Dong
,
Y.
, and
Huang
,
J.
,
2014
, “
Leader-Following Connectivity Preservation Rendezvous of Multiple Double Integrator Systems Based on Position Measurement Only
,”
IEEE Trans. Autom. Control
,
59
(
9
), pp.
2598
2603
.
19.
Su
,
H.
,
Wang
,
X.
, and
Chen
,
G.
,
2010
, “
Rendezvous of Multiple Mobile Agents With Preserved Network Connectivity
,”
Syst. Control Lett.
,
59
(
5
), pp.
313
322
.
20.
Mao
,
Y.
,
Dou
,
L.
,
Fang
,
H.
, and
Chen
,
J.
,
2013
, “
Distributed Flocking of Lagrangian Systems With Global Connectivity Maintenance
,”
IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems
(
CYBER
), Nanjing, China, May 26–29, pp.
69
74
.
21.
Dong
,
Y.
, and
Huang
,
J.
,
2014
, “
Consensus With Connectivity Preservation of Uncertain Euler-Lagrange Multi-Agent Systems
,”
33rd Chinese Control Conference
(
CCC
), Nanjing, China, July 28–30, pp.
1063
1068
.
22.
Cai
,
H.
, and
Huang
,
J.
,
2014
, “
Leader-Following Consensus of Multiple Uncertain Euler-Lagrange Systems Under Switching Network Topology
,”
Int. J. Gen. Syst.
,
43
(
3–4
), pp.
294
304
.
23.
Zavlanos
,
M. M.
,
Jadbabaie
,
A.
, and
Pappas
,
G. J.
,
2007
, “
Flocking While Preserving Network Connectivity
,”
46th IEEE Conference on Decision and Control
, New Orleans, LA, Dec. 12–14, pp.
2919
2924
.
24.
Wang
,
H.
,
2014
, “
Consensus of Networked Mechanical Systems With Communication Delays: A Unified Framework
,”
IEEE Trans. Autom. Control
,
59
(
6
), pp.
1571
1576
.
You do not currently have access to this content.