We present a novel approach to achieve decentralized distribution of forces in a multirobot system. In this approach, each robot in the group relies on the behavior of a cooperative virtual teammate that is defined independent of the population and formation of the real team. Consequently, such formulation eliminates the need for interagent communications or leader–follower architectures. In particular, effectiveness of the method is studied in a collective manipulation problem where the objective is to control the position and orientation of a body in time. To experimentally validate the performance of the proposed method, a new swarm agent, Δρ (Delta-Rho), is introduced. A multirobot system, consisting of five Δρ agents, is then utilized as the experimental setup. The obtained results are also compared with a norm-optimal centralized controller by quantitative metrics. Experimental results prove the performance of the algorithm in different tested scenarios and demonstrate a scalable, versatile, and robust system-level behavior.

References

1.
Franks
,
N. R.
,
1986
, “
Teams in Social Insects: Group Retrieval of Prey by Army Ants (Eciton burchelli, Hymenoptera: Formicidae)
,”
Behav. Ecol. Sociobiol.
,
18
(
6
), pp.
425
429
.
2.
Berman
,
S.
,
Lindsey
,
Q.
,
Sakar
,
M. S.
,
Kumar
,
V.
, and
Pratt
,
S. C.
,
2011
, “
Experimental Study and Modeling of Group Retrieval in Ants as an Approach to Collective Transport in Swarm Robotic Systems
,”
Proc. IEEE
,
99
(
9
), pp.
1470
1481
.
3.
Krieger
,
M. J.
,
Billeter
,
J.-B.
, and
Keller
,
L.
,
2000
, “
Ant-like Task Allocation and Recruitment in Cooperative Robots
,”
Nature
,
406
(
6799
), pp.
992
995
.
4.
Camazine
,
S.
,
2003
,
Self-Organization in Biological Systems
,
Princeton University Press
, Princeton, NJ.
5.
Faal
,
S. G.
,
Kalat
,
S. T.
, and
Onal
,
C. D.
,
2016
, “
Towards Collective Manipulation Without Inter-Agent Communication
,”
31st Annual ACM Symposium on Applied Computing
, Pisa, Italy, Apr. 4–8, pp.
275
280
.
6.
Kube
,
C. R.
, and
Bonabeau
,
E.
,
2000
, “
Cooperative Transport by Ants and Robots
,”
Rob. Auton. Syst.
,
30
(
1
), pp.
85
101
.
7.
Wan
,
W.
,
Fukui
,
R.
,
Shimosaka
,
M.
,
Sato
,
T.
, and
Kuniyoshi
,
Y.
,
2012
, “
Cooperative Manipulation With Least Number of Robots Via Robust Caging
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Kachsiung, Taiwan, July 11–14, pp.
896
903
.
8.
Kobayashi
,
Y.
, and
Hosoe
,
S.
,
2012
, “
Cooperative Enclosing and Grasping of an Object by Decentralized Mobile Robots Using Local Observation
,”
Int. J. Soc. Rob.
,
4
(
1
), pp.
19
32
.
9.
Campo
,
A.
,
Nouyan
,
S.
,
Birattari
,
M.
,
Groß
,
R.
, and
Dorigo
,
M.
,
2006
, “
Negotiation of Goal Direction for Cooperative Transport
,”
Ant Colony Optimization and Swarm Intelligence
,
Springer
, Berlin, pp.
191
202
.
10.
Rubenstein
,
M.
,
Cabrera
,
A.
,
Werfel
,
J.
,
Habibi
,
G.
,
McLurkin
,
J.
, and
Nagpal
,
R.
,
2013
, “
Collective Transport of Complex Objects by Simple Robots: Theory and Experiments
,”
International Conference on Autonomous Agents and Multi-Agent Systems
, St. Paul, MN, May 6–10, pp.
47
54
.
11.
Groß
,
R.
, and
Dorigo
,
M.
,
2004
, “
Group Transport of an Object to a Target That Only Some Group Members May Sense
,”
Parallel Problem Solving From Nature
(
PPSN VIII
), Birmingham, UK, Sept. 18–22, pp.
852
861
.
12.
Wang
,
Z.
, and
Schwager
,
M.
,
2014
, “
Multi-Robot Manipulation Without Communication
,”
International Symposium on Distributed Autonomous Robotic Systems
(
DARS
), pp. 135–149.
13.
Wang
,
Z.
, and
Schwager
,
M.
,
2016
, “
Kinematic Multi-Robot Manipulation With No Communication Using Force Feedback
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Stockholm, Sweden, May 16–21, pp. 427–432.
14.
Kube
,
C. R.
, and
Zhang
,
H.
,
1993
, “
Collective Robotics: From Social Insects to Robots
,”
Adapt. Behav.
,
2
(
2
), pp.
189
218
.
15.
Zavlanos
,
M. M.
,
Jadbabaie
,
A.
, and
Pappas
,
G. J.
,
2007
, “
Flocking While Preserving Network Connectivity
,”
46th IEEE Conference on Decision and Control
(
CDC
), New Orleans, LA, Dec. 12–14, pp.
2919
2924
.
16.
Becker
,
A.
,
Habibi
,
G.
,
Werfel
,
J.
,
Rubenstein
,
M.
, and
McLurkin
,
J.
,
2013
, “
Massive Uniform Manipulation: Controlling Large Populations of Simple Robots With a Common Input Signal
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Tokyo, Japan, Nov. 3–7, pp.
520
527
.
17.
Craig
,
J. J.
,
2005
,
Introduction to Robotics: Mechanics and Control
, Vol.
3
,
Prentice Hall
,
Upper Saddle River, NJ
.
18.
Hogan
,
N.
,
1984
, “
Impedance Control: An Approach to Manipulation
,”
American Control Conference
(
ACC
), San Diego, CA, June 6–8, pp.
304
313
.
19.
Li
,
Z.
,
Hsu
,
P.
, and
Sastry
,
S.
,
1989
, “
Grasping and Coordinated Manipulation by a Multifingered Robot Hand
,”
Int. J. Rob. Res.
,
8
(
4
), pp.
33
50
.
20.
Golan
,
J. S.
,
2012
, “
Moore–Penrose Pseudoinverses
,”
The Linear Algebra a Beginning Graduate Student Ought to Know
,
Springer
, Dordrecht, The Netherlands, pp.
441
452
.
21.
Rubenstein
,
M.
,
Ahler
,
C.
, and
Nagpal
,
R.
,
2012
, “
Kilobot: A Low Cost Scalable Robot System for Collective Behaviors
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Saint Paul, MN, May 14–18, pp.
3293
3298
.
22.
Bonani
,
M.
,
Longchamp
,
V.
,
Magnenat
,
S.
,
Rétornaz
,
P.
,
Burnier
,
D.
,
Roulet
,
G.
,
Vaussard
,
F.
,
Bleuler
,
H.
, and
Mondada
,
F.
,
2010
, “
The Marxbot, a Miniature Mobile Robot Opening New Perspectives for the Collective-Robotic Research
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Taipei, Taiwan, Oct. 18–22, pp.
4187
4193
.
23.
Birkmeyer
,
P.
,
Peterson
,
K.
, and
Fearing
,
R. S.
,
2009
, “
Dash: A Dynamic 16 g Hexapedal Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), St. Louis, MO, Oct. 10–15, pp.
2683
2689
.
24.
Kalat
,
S. T.
,
Faal
,
S. G.
,
Celik
,
U.
, and
Onal
,
C. D.
,
2015
, “
Tribot: A Minimally-Actuated Accessible Holonomic Hexapedal Locomotion Platform
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Hamburg, Germany, Sept. 28–Oct. 2, pp.
6292
6297
.
25.
Faal
,
S. G.
,
Chen
,
F.
,
Tao
,
W.
,
Agheli
,
M.
,
Tasdighikalat
,
S.
, and
Onal
,
C. D.
,
2016
, “
Hierarchical Kinematic Design of Foldable Hexapedal Locomotion Platforms
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
011005
.
26.
Wang
,
Z.
,
Yang
,
G.
,
Su
,
X.
, and
Schwager
,
M.
,
2016
, “
Ouijabots: Omnidirectional Robots for Cooperative Object Transport With Rotation Control Using No Communication
,”
International Conference Distributed Autonomous Robotics Systems
, (
DARS
), London, Nov. 7–9, pp. 117–131.
27.
Şahin
,
E.
,
2004
, “
Swarm Robotics: From Sources of Inspiration to Domains of Application
,”
Swarm Robotics
,
Springer
, Berlin, pp.
10
20
.
28.
Olariu
,
S.
, and
Zomaya
,
A. Y.
,
2005
,
Handbook of Bioinspired Algorithms and Applications
,
CRC Press
, Boca Raton, FL.
29.
Velenis
,
E.
, and
Tsiotras
,
P.
,
2005
, “
Optimal Velocity Profile Generation for Given Acceleration Limits: Theoretical Analysis
,”
American Control Conference
, Vol.
2
, p.
5
.
30.
Haddad
,
M.
,
Khalil
,
W.
, and
Lehtihet
,
H.
,
2010
, “
Trajectory Planning of Unicycle Mobile Robots With a Trapezoidal-Velocity Constraint
,”
IEEE Trans. Rob.
,
26
(
5
), pp.
954
962
.
31.
Neto
,
P. D. M.
,
Araújo
,
R. D. A.
,
Petry
,
G. G.
,
Ferreira
,
T. A.
, and
Vasconcelos
,
G. C.
,
2007
, “
Hybrid Swarm System for Time Series Forecasting
,”
VI Encontro Nacional De Inteligência Artif. (ENIA)
, Uberlândia, Brazil.
32.
Armstrong
,
J. S.
, and
Collopy
,
F.
,
1992
, “
Error Measures for Generalizing About Forecasting Methods: Empirical Comparisons
,”
Int. J. Forecasting
,
8
(
1
), pp.
69
80
.
33.
Willmott
,
C. J.
,
1981
, “
On the Validation of Models
,”
Phys. Geogr.
,
2
(
2
), pp.
184
194
.
34.
Hyndman
,
R. J.
, and
Koehler
,
A. B.
,
2006
, “
Another Look at Measures of Forecast Accuracy
,”
Int. J. Forecasting
,
22
(
4
), pp.
679
688
.
35.
Habibi
,
G.
,
Schmidt
,
L.
,
Jellins
,
M.
, and
McLurkin
,
J.
,
2016
, “
K-Redundant Trees for Safe and Efficient Multi-Robot Recovery in Complex Environments
,”
Robotics Research
,
Springer
, Cham, Switzerland, pp.
149
165
.
36.
Kalat
,
S. T.
,
Faal
,
S. G.
, and
Onal
,
C. D.
,
2017
, “
Scalable Collective Impedance Control of an Object Via a Decentralized Force Control Method
,”
American Control Conference
(
ACC
), Seattle, WA, May 24–26, pp.
2680
2686
.
37.
Kalat
,
S. T.
,
2017
, “Virtual Coordination in Collective Object Manipulation,” Master's thesis, Worcester Polytechnic Institute, Worcester, MA.
38.
Faal
,
S. G.
,
Kalat
,
S. T.
, and
Onal
,
C. D.
,
2017
, “
Decentralized Obstacle Avoidance in Collective Object Manipulation
,”
NASA/ESA Conference on Adaptive Hardware and Systems
(
AHS
), Pasadena, CA, July 24–27, pp.
133
138
.
You do not currently have access to this content.