This paper considers the observer design problem for a class of discrete-time system whose nonlinear time-varying terms satisfy incremental quadratic constraints. We first construct a circle criterion based full-order observer by injecting output estimation error into the observer nonlinear terms. We also construct a reduced-order observer to estimate the unmeasured system state. The proposed observers guarantee exponential convergence of the state estimation error to zero. The design of the proposed observers is reduced to solving a set of linear matrix inequalities. It is proved that the conditions under which a full-order observer exists also guarantee the existence of a reduced-order observer. Compared to some previous results in the literature, this work considers a larger class of nonlinearities and unifies some related observer designs for discrete-time nonlinear systems. Finally, a numerical example is included to illustrate the effectiveness of the proposed design.

References

1.
Abbaszadeh
,
M.
, and
Marquez
,
H. J.
,
2009
, “
LMI Optimization Approach to Robust H∞ Observer Design and Static Output Feedback Stabilization for Discrete-Time Nonlinear Uncertain Systems
,”
Int. J. Robust Nonlinear Control
,
19
(
3
), pp.
313
340
.
2.
Li
,
H.
,
Gao
,
Y.
,
Shi
,
P.
, and
Lam
,
H.
,
2016
, “
Observer-Based Fault Detection for Nonlinear Systems With Sensor Fault and Limited Communication Capacity
,”
IEEE Trans. Autom. Control
,
61
(
9
), pp.
2745
2751
.
3.
Ahmad
,
S.
,
Rehan
,
M.
, and
Hong
,
K.-S.
,
2016
, “
Observer-Based Robust Control of One-Sided Lipschitz Nonlinear Systems
,”
ISA Trans.
,
65
, pp.
230
240
.
4.
Shtessel
,
Y.
,
Edwards
,
C.
,
Fridman
,
L.
, and
Levant
,
A.
,
2015
,
Sliding Mode Control and Observation
,
Birkhäuser Basel
, Basel, Switzerland.
5.
Ji
,
M.
,
Yang
,
C.
, and
Zhang
,
W.
,
2015
, “
Stabilization of Discrete-Time Linear Systems With Quantization and Noise Input
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
6
), p.
064502
.
6.
Beikzadeh
,
H.
, and
Marquez
,
H. J.
,
2014
, “
Multirate Observers for Nonlinear Sampled-Data Systems Using Input-to-State Stability and Discrete-Time Approximation
,”
IEEE Trans. Autom. Control
,
59
(
9
), pp.
2469
2474
.
7.
Krener
,
A. J.
, and
Isidori
,
A.
,
1983
, “
Linearization by Output Injection and Nonlinear Observers
,”
Syst. Control Lett.
,
3
(
1
), pp.
47
52
.
8.
Arcak
,
M.
, and
Kokotović
,
P.
,
2001
, “
Nonlinear Observers: A Circle Criterion Design and Robustness Analysis
,”
Automatica
,
37
(
12
), pp.
1923
1930
.
9.
Fan
,
X.
, and
Arcak
,
M.
,
2003
, “
Observer Design for Systems With Multivariable Monotone Nonlinearities
,”
Syst. Control Lett.
,
50
(
4
), pp.
319
330
.
10.
Pertew
,
A. M.
,
Marquez
,
H. J.
, and
Zhao
,
Q.
,
2006
, “
H∞ Observer Design for Lipschitz Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
51
(
7
), pp.
1211
1216
.
11.
Rajamani
,
R.
,
1998
, “
Observers for Lipschitz Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
43
(
3
), pp.
397
401
.
12.
Zhu
,
F.
, and
Han
,
Z.
,
2002
, “
A Note on Observers for Lipschitz Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
47
(
10
), pp.
1751
1754
.
13.
Abbaszadeh
,
M.
, and
Marquez
,
H. J.
,
2010
, “
Nonlinear Observer Design for One-Sided Lipschitz Systems
,”
American Control Conference
, Baltimore, MD, June 30–July 2, pp.
5284
5289
.
14.
Hu
,
G.-D.
,
2006
, “
Observers for One-Sided Lipschitz Non-Linear Systems
,”
IMA J. Math. Control Inf.
,
23
(
4
), pp.
395
401
.
15.
Zhang
,
W.
,
Su
,
H.
,
Wang
,
H.
, and
Han
,
Z.
,
2012
, “
Full-Order and Reduced-Order Observers for One-Sided Lipschitz Nonlinear Systems Using Riccati Equations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
12
), pp.
4968
4977
.
16.
Zhang
,
W.
,
Su
,
H.
,
Zhu
,
F.
, and
Azar
,
G. M.
,
2015
, “
Unknown Input Observer Design for One-Sided Lipschitz Nonlinear Systems
,”
Nonlinear Dyn.
,
79
(
2
), pp.
1469
1479
.
17.
Zhang
,
W.
,
Su
,
H.
,
Zhu
,
F.
, and
Bhattacharyya
,
S. P.
,
2016
, “
Improved Exponential Observer Design for One-Sided Lipschitz Nonlinear Systems
,”
Int. J. Robust Nonlinear Control
,
26
(
18
), pp.
3958
3973
.
18.
Ahmad
,
S.
, and
Rehan
,
M.
,
2016
, “
On Observer-Based Control of One-Sided Lipschitz Systems
,”
J. Franklin Inst.
,
353
(
4
), pp.
903
916
.
19.
Zhao
,
Y.
,
Tao
,
J.
, and
Shi
,
N.-Z.
,
2010
, “
A Note on Observer Design for One-Sided Lipschitz Nonlinear Systems
,”
Syst. Control Lett.
,
59
(
1
), pp.
66
71
.
20.
Abbaszadeh
,
M.
, and
Marquez
,
H. J.
,
2008
, “
Robust H∞ Observer Design for Sampled-Data Lipschitz Nonlinear Systems With Exact and Euler Approximate Models
,”
Automatica
,
44
(
3
), pp.
799
806
.
21.
Guo
,
S.
, and
Zhu
,
F.
,
2015
, “
Reduced-Order Observer Design for Discrete-Time Descriptor Systems With Unknown Inputs: An Linear Matrix Inequality Approach
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
8
), p.
084503
.
22.
Dinh
,
T. N.
,
Andrieu
,
V.
,
Nadri
,
M.
, and
Serres
,
U.
,
2015
, “
Continuous-Discrete Time Observer Design for Lipschitz Systems With Sampled Measurements
,”
IEEE Trans. Autom. Control
,
60
(
3
), pp.
787
792
.
23.
Ibrir
,
S.
,
Xie
,
W. F.
, and
Su
,
C.-Y.
,
2005
, “
Observer-Based Control of Discrete-Time Lipschitzian Non-Linear Systems: Application to One-Link Flexible Joint Robot
,”
Int. J. Control
,
78
(
6
), pp.
385
395
.
24.
Ibrir
,
S.
,
2007
, “
Circle-Criterion Approach to Discrete-Time Nonlinear Observer Design
,”
Automatica
,
43
(
8
), pp.
1432
1441
.
25.
Zemouche
,
A.
, and
Boutayeb
,
M.
,
2006
, “
Observer Design for Lipschitz Nonlinear Systems: The Discrete-Time Case
,”
IEEE Trans. Circuits Syst.
,
53
(
8
), pp.
777
781
.
26.
Zhang
,
W.
,
Su
,
H.
,
Zhu
,
F.
, and
Wang
,
M.
,
2013
, “
Observer-Based H∞ Synchronization and Unknown Input Recovery for a Class of Digital Nonlinear Systems
,”
Circuits Syst. Signal Process.
,
32
(
6
), pp.
2867
2881
.
27.
Lu
,
G.
, and
Ho
,
D. W. C.
,
2006
, “
Full-Order and Reduced-Order Observers for Lipschitz Descriptor Systems: The Unified LMI Approach
,”
IEEE Trans. Circuits Syst.
,
53
(
7
), pp.
563
567
.
28.
Wang
,
Z.
,
Shen
,
Y.
,
Zhang
,
X.
, and
Wang
,
Q.
,
2012
, “
Observer Design for Discrete-Time Descriptor Systems: An LMI Approach
,”
Syst. Control Lett.
,
61
(
6
), pp.
683
687
.
29.
Benallouch
,
M.
,
Boutayeb
,
M.
, and
Zasadzinski
,
M.
,
2012
, “
Observer Design for One-Sided Lipschitz Discrete-Time Systems
,”
Syst. Control Lett.
,
61
(
9
), pp.
879
886
.
30.
Zhang
,
W.
,
Su
,
H.
,
Zhu
,
F.
, and
Yue
,
D.
,
2012
, “
A Note on Observers for Discrete-Time Lipschitz Nonlinear Systems
,”
IEEE Trans. Circuits Syst.
,
59
(
2
), pp.
123
127
.
31.
Aç ikmeşe
,
B.
, and
Corless
,
M.
,
2011
, “
Observers for Systems With Nonlinearities Satisfying Incremental Quadratic Constraints
,”
Automatica
,
47
(
7
), pp.
1339
1348
.
32.
D'Alto
,
L.
, and
Corless
,
M.
,
2013
, “
Incremental Quadratic Stability
,”
Numer. Algebra, Control Optim.
,
3
(
1
), pp.
175
201
.
33.
Chakrabarty
,
A.
,
Corless
,
M. J.
,
Buzzard
,
G. T.
,
Żak
,
S. H.
, and
Rundell
,
A. E.
,
2017
, “
State and Unknown Input Observers for Nonlinear Systems With Bounded Exogenous Inputs
,”
IEEE Trans. Autom. Control
,
62
(
11
), pp.
5497
5510
.
34.
Zhao
,
Y.
,
Zhang
,
W.
,
Su
,
H.
, and
Yang
,
J.
,
2018
, “
Observer-Based Synchronization of Chaotic Systems Satisfying Incremental Quadratic Constraints and Its Application in Secure Communication
,”
IEEE Trans. Syst. Man Cybern. Syst.
(in press).
35.
Zhang
,
W.
,
Abate
,
A.
,
Hu
,
J.
, and
Vitus
,
M. P.
,
2009
, “
Exponential Stabilization of Discrete-Time Switched Linear Systems
,”
Automatica
,
45
(
11
), pp.
2526
2536
.
36.
Boyd
,
S.
,
El Ghaoui
,
L.
,
Feron
,
E.
, and
Balakrishnan
,
V.
,
1994
,
Linear Matrix Inequalities in System and Control Theory
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
37.
Boutat
,
D.
,
Boutat-Baddas
,
L.
, and
Darouach
,
M.
,
2012
, “
A New Reduced-Order Observer Normal Form for Nonlinear Discrete Time Systems
,”
Syst. Control Lett.
,
61
(
10
), pp.
1003
1008
.
38.
Boutayeb
,
M.
, and
Darouach
,
M.
,
2000
, “
A Reduced-Order Observer for Non-Linear Discrete-Time Systems
,”
Syst. Control Lett.
,
39
(
2
), pp.
141
151
.
39.
Kim
,
K.-S.
, and
Rew
,
K.-H.
,
2013
, “
Reduced Order Disturbance Observer for Discrete-Time Linear Systems
,”
Automatica
,
49
(
4
), pp.
968
975
.
40.
Gao
,
T.
,
Gu
,
Q.
, and
Chen
,
Z.
,
2009
, “
Analysis of the Hyper-Chaos Generated From Chens System
,”
Chaos, Solitons Fractals
,
39
(
4
), pp.
1849
1855
.
You do not currently have access to this content.