This technical brief emphasizes on the control of polymer electrolyte membrane fuel cell (PEMFC) air supply system. The control objective is to improve the net power output through adjusting the oxygen excess ratio within a reasonable range. In view of the problem that the PEMFC air supply system is difficult to achieve accurate modeling and stable control, a robust adaptive controller is proposed by utilizing exact linearization and radical basis function (RBF) neural network (RBFNN) system. This controller does not need the complete structure and parameters of PEMFC system. The unmodeled dynamics of PEMFC system can be approximated by RBFNN in which the adaptive learning law can be derived based on Lyapunov theory, and the external disturbance as well as the approximation error of RBFNN can be attenuated through robust control. The stability analysis shows that the system tracking error is uniformly ultimately bounded. Finally, the effectiveness and feasibility of controller are validated by hardware-in-loop (HIL) experiment.

References

1.
Wang
,
Y.
,
Chen
,
K. S.
,
Mishler
,
J.
,
Cho
,
S. C.
, and
Adroher
,
X. C.
,
2011
, “
A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Research
,”
Appl. Energy
,
88
(
4
), pp.
981
1007
.
2.
Jouin
,
M.
,
Gouriveau
,
R.
,
Hissel
,
D.
,
Pra
,
M. C.
, and
Zerhouni
,
N.
,
2014
, “
Prognostics of PEM Fuel Cell in a Particle Filtering Framework
,”
Int. J. Hydrogen Energy
,
39
(
1
), pp.
481
494
.
3.
Liu
,
P.
, and
Nørskov
,
J. K.
,
2015
, “
Kinetics of the Anode Processes in PEM Fuel Cells–The Promoting Effect of Ru in PtRu Anodes
,”
Fuel Cells
,
1
(
3–4
), pp.
192
201
.
4.
Hardman
,
S.
,
Steinberger-Wilckens
,
R.
, and
Dan
,
V. D. H.
,
2013
, “
Disruptive Innovations: The Case for Hydrogen Fuel Cells and Battery Electric Vehicles
,”
Int. J. Hydrogen Energy
,
38
(
35
), pp.
15438
15451
.
5.
Marx
,
N.
,
Boulon
,
L.
,
Gustin
,
F.
,
Hissel
,
D.
, and
Agbossou
,
K.
,
2014
, “
A Review of Multi-Stack and Modular Fuel Cell Systems: Interests, Application Areas and On-Going Research Activities
,”
Int. J. Hydrogen Energy
,
39
(
23
), pp.
12101
12111
.
6.
Chai
,
T.
,
Ding
,
J.
, and
Wu
,
F.
,
2011
, “
Hybrid Intelligent Control for Optimal Operation of Shaft Furnace Roasting Process
,”
Control Eng. Pract.
,
19
(
3
), pp.
264
275
.
7.
Li
,
H.
, and
Yan
,
W.
,
2017
, “
Model Predictive Stabilization of Constrained Underactuated Autonomous Underwater Vehicles With Guaranteed Feasibility and Stability
,”
IEEE/ASME Trans. Mechatronics
,
22
(
3
), pp.
1185
1194
.
8.
Almeida
,
P. E. M.
, and
Simoes
,
M. G.
,
2005
, “
Neural Optimal Control of PEM Fuel Cells With Parametric CMAC Networks
,”
IEEE Trans. Ind. Appl.
,
41
(
1
), pp.
237
245
.
9.
Abaspour
,
A.
,
Parsa
,
N. T.
, and
Sadeghi
,
M.
,
2014
, “
A New Feedback Linearization-NSGA-II Based Control Design for PEM Fuel Cell
,”
Int. J. Comput. Appl.
,
97
(
10
), pp.
25
32
.
10.
Abaspour
,
A.
,
Khalilnejad
,
A.
, and
Chen
,
Z.
,
2016
, “
Robust Adaptive Neural Network Control for PEM Fuel Cell
,”
Int. J. Hydrogen Energy
,
41
(
44
), pp.
20385
20395
.
11.
Pukrushpan
,
J. T.
,
Stefanopoulou
,
A. G.
, and
Peng
,
H.
,
2004
,
Control of Fuel Cell Power Systems
,
Springer
,
London
.
12.
Suh
,
K. W.
,
2006
, “
Modeling, Analysis and Control of Fuel Cell Hybrid Power Systems
,”
Ph.D. thesis
, University of Michigan, Ann Arbor, MI.https://deepblue.lib.umich.edu/handle/2027.42/125897
13.
Matraji
,
I.
,
Laghrouche
,
S.
,
Jemei
,
S.
, and
Wack
,
M.
,
2013
, “
Robust Control of the PEM Fuel Cell Air-Feed System Via Sub-Optimal Second Order Sliding Mode
,”
Appl. Energy
,
104
(
2
), pp.
945
957
.
14.
Fonseca
,
R. D.
,
Bideaux
,
E.
,
Gerard
,
M.
,
Jeanneret
,
B.
,
Desbois-Renaudin
,
M.
, and
Sari
,
A.
,
2014
, “
Control of PEMFC System Air Group Using Differential Flatness Approach: Validation by a Dynamic Fuel Cell System Model
,”
Appl. Energy
,
113
(
6
), pp.
219
229
.
15.
Niknezhadi
,
A.
,
Allué-Fantova
,
M.
,
Kunusch
,
C.
, and
Ocampo-Martínez
,
C.
,
2011
, “
Design and Implementation of LQR/LQG Strategies for Oxygen Stoichiometry Control in PEM Fuel Cells Based Systems
,”
J. Power Sources
,
196
(
9
), pp.
4277
4282
.
16.
Gruber
,
J. K.
,
Doll
,
M.
, and
Bordons
,
C.
,
2009
, “
Design and Experimental Validation of a Constrained MPC for the Air Feed of a Fuel Cell
,”
Control Eng. Pract.
,
17
(
8
), pp.
874
885
.
17.
Wang
,
Y.
,
Xu
,
L.
, and
Wu
,
H.
,
2018
, “
Adaptive Robust Backstepping Output Tracking Control for a Class of Uncertain Nonlinear Systems Using Neural Network
,”
ASME J. Dyn. Syst. Meas. Control
,
140
(
7
), p.
071014
.
18.
Sanner
,
R. M.
, and
Slotine
,
J. J. E.
,
1992
, “
Gaussian Networks for Direct Adaptive Control
,”
IEEE Trans. Neural Networks
,
3
(
6
), pp.
837
863
.
19.
Seshagiri
,
S.
, and
Khalil
,
H. K.
,
2000
, “
Output Feedback Control of Nonlinear Systems Using RBF Neural Networks
,”
IEEE Trans. Neural Networks
,
11
(
1
), pp.
69
79
.
20.
Sundararajan
,
N.
,
Saratchandran
,
P.
, and
Li
,
Y.
,
2004
,
Fully Tuned Radial Basis Function Neural Networks for Flight Control
,
Springer
,
New York
.
21.
Talj
,
R. J.
,
Hissel
,
D.
,
Ortega
,
R.
,
Becherif
,
M.
, and
Hilairet
,
M.
,
2010
, “
Experimental Validation of a PEM Fuel-Cell Reduced-Order Model and a Moto-Compressor Higher Order Sliding-Mode Control
,”
IEEE Trans. Ind. Electron.
,
57
(
6
), pp.
1906
1913
.
22.
Chen
,
J.
,
Liu
,
Z.
,
Wang
,
F.
,
Ouyang
,
Q.
, and
Su
,
H.
,
2018
, “
Optimal Oxygen Excess Ratio Control for PEM Fuel Cells
,”
IEEE Trans. Control Syst. Technol.
,
26
(
5
), pp.
1711
1721
.
23.
Deng
,
H.
,
Li
,
Q.
,
Chen
,
W.
, and
Zhang
,
G.
,
2018
, “
High Order Sliding Mode Observer-Based OER Control for PEM Fuel Cell Air-Feed System
,”
IEEE Trans. Energy Convers.
,
33
(
1
), pp.
232
244
.
24.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
, 3rd ed.,
Prentice Hall, Upper Saddle River
,
NJ
.
25.
Akhtar
,
A.
,
Nielsen
,
C.
, and
Waslander
,
S. L.
,
2017
, “
Path Following Using Dynamic Transverse Feedback Linearization for Car-Like Robots
,”
IEEE Trans. Rob.
,
31
(
2
), pp.
269
279
.
26.
Yang
,
S.
,
Tang
,
Y.
,
Xu
,
Z.
,
Zagrodnik
,
M.
,
Amit
,
G.
, and
Wang
,
P.
,
2017
, “
Feedback Linearization-Based Current Control Strategy for Modular Multilevel Converters
,”
IEEE Trans. Power Electron.
,
33
(
1
), pp.
161
174
.
You do not currently have access to this content.