Abstract

Pneumatic artificial muscles (PAMs) are an important type of bionic actuators for high power-to-weight ratio and good flexibility. However, nonlinearities always exist in systems driven by PAMs, which should be dealt with to obtain good performances during position control. In this paper, a nonlinear state error feedback controller (NSEFC) is presented to obtain good position accuracy for a two-joint manipulator system driven by PAMs. The two-joint manipulator system has nonlinearities, which come from friction, hysteresis, uncertainties of model, loss of piping pressure, coupling between two joints, and so on. A nonlinear extended state observer (ESO) is designed to estimate the nonlinearities in the two-joint manipulator system. Both the effectiveness of the nonlinear ESO and stability of the two-joint manipulator system are given by Lyapunov approaches. Experimental results are obtained to show that the position accuracy of the two-joint manipulator system is improved based on the proposed method in this paper.

References

1.
Tondu
,
B.
, and
Lopez
,
P.
,
2000
, “
Modeling and Control of McKibben Artificial Muscle Robot Actuators
,”
IEEE Control Syst.
,
20
(
2
), pp.
15
38
.10.1109/37.833638
2.
Serres
,
J. L.
,
Reynolds
,
D. B.
,
Phillips
,
C. A.
,
Gerschutz
,
M. J.
, and
Repperger
,
D. W.
,
2009
, “
Characterisation of a Phenomenological Model for Commercial Pneumatic Muscles Actuators
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
4
), pp.
423
430
.10.1080/10255840802654327
3.
Ferris
,
D.
,
Czerniecki
,
J.
, and
Hannaford
,
B.
,
2005
, “
An Ankle Foot Orthosis Powered by Artificial Pneumatic Muscles
,”
J. Appl. Biomech.
,
21
(
2
), pp.
189
197
.10.1123/jab.21.2.189
4.
Tondu
,
B.
,
Ippolito
,
S.
,
Guiochet
,
J.
, and
Daidie
,
A.
,
2005
, “
A Seven-Degrees-of-Freedom Robot Arm Driven by Pneumatic Artificial Muscles for Humanoid Robot
,”
Int. J. Rob. Res.
,
24
(
4
), pp.
257
274
.10.1177/0278364905052437
5.
Michael
,
V.
,
Bram
,
V.
,
Ronald
,
V.
, and
Bjorn
,
V.
,
2009
, “
Sliding Mode Control of a 2DOF Planar Pneumatic Manipulator
,”
ASME J. Dyn. Syst. Meas. Control
,
131
(
2
), p.
021013
.10.1115/1.3023132
6.
Turkseven
,
M.
, and
Ueda
,
J.
,
2018
, “
Model-Based Force Control of Pneumatic Actuators With Long Transmission Lines
,”
IEEE/ASME Trans. Mechatronics
,
23
(
3
), pp.
1292
1302
.10.1109/TMECH.2018.2832986
7.
Das
,
S.
,
Kishishita
,
Y.
,
Tsuji
,
T.
,
Lowell
,
C.
,
Ogawa
,
K.
, and
Kurita
,
Y.
,
2018
, “
ForceHand Glove: A Wearable Force-Feedback Glove With Pneumatic Artificial Muscles
,”
IEEE Rob. Autom. Lett.
,
3
(
3
), pp.
2416
2423
.10.1109/LRA.2018.2813403
8.
Vo-Minh
,
T.
,
Tjahjowidodo
,
T.
,
Ramon
,
H.
, and
Van Brussel
,
H.
,
2011
, “
A New Approach to Modeling Hysteresis in a Pneumatic Artificial Muscle Using the Maxwell-Slip Model
,”
IEEE/ASME Trans. Mechatronics
,
16
(
1
), pp.
177
186
.10.1109/TMECH.2009.2038373
9.
Thanh
,
T.
, and
Ahn
,
K.
,
2006
, “
Intelligent Phase Plane Switching Control of Pneumatic Artificial Muscle Manipulators With Magneto-Rheological Brake
,”
Mechatronics
,
16
(
2
), pp.
85
95
.10.1016/j.mechatronics.2005.10.001
10.
Ahn
,
K.
, and
Thanh
,
T.
,
2005
, “
Nonlinear PID Control to Improve the Control Performance of 2 Axes Pneumatic Artificial Muscle Manipulator Using Neural Network
,”
J. Mech. Sci. Technol.
,
19
(
1
), pp.
106
115
.10.1007/BF02916109
11.
Andrikopoulos
,
G.
,
Nikolakopoulos
,
G.
, and
Manesis
,
S.
,
2013
, “
Pneumatic Artificial Muscles: A Switching Model Predictive Control Approach
,”
Control Eng. Pract.
,
10
(
3
), pp.
329
340
.10.1016/j.conengprac.2013.09.003
12.
Vanderborght
,
B.
,
Verrelst
,
B.
,
Ham
,
R.
,
Daerden
,
F.
, and
Lefeber
,
D.
,
2009
, “
Proxy-Based Sliding Mode Control of a Planar Pneumatic Manipulator
,”
Int. J. Rob. Res.
,
28
(
2
), pp.
266
284
.10.1177/0278364908095842
13.
Ahn
,
K.
, and
Anh
,
H.
,
2009
, “
Design and Implementation of an Adaptive Recurrent Neural Networks (ARNN) Controller of the Pneumatic Artificial Muscle (PAM) Manipulator
,”
Mechatronics
,
19
(
6
), pp.
816
828
.10.1016/j.mechatronics.2009.04.006
14.
Han
,
J.
,
2009
, “
From PID to Active Disturbance Rejection Control
,”
IEEE Trans. Ind. Electron.
,
56
(
3
), pp.
900
906
.10.1109/TIE.2008.2011621
15.
Han
,
J.
,
2008
,
Active Disturbance Rejection Control Technique-The Technique for Estimating and Compensating the Uncertainties
,
National Defense Industry Press
,
Beijing, China
.
16.
Sun
,
D.
,
2007
, “
Comments on Active Disturbance Rejection Control
,”
IEEE Trans. Ind. Electron.
,
54
(
6
), pp.
3428
3429
.10.1109/tie.2007.909047
17.
Zhao
,
L.
,
Xia
,
Y.
,
Yang
,
Y.
, and
Liu
,
Z.
,
2017
, “
Multicontroller Positioning Strategy for a Pneumatic Servo System Via Pressure Feedback
,”
IEEE Trans. Ind. Electron.
,
64
(
6
), pp.
4800
4809
.10.1109/TIE.2017.2674605
18.
Yang
,
H.
,
Cheng
,
L.
,
Xia
,
Y.
, and
Yuan
,
Y.
,
2018
, “
Active Disturbance Rejection Attitude Control for a Dual Closed-Loop Quadrotor Under Gust Wind
,”
IEEE Trans. Control Syst. Technol.
,
26
(
4
), pp.
1400
1405
.10.1109/TCST.2017.2710951
19.
Zhao
,
L.
,
Li
,
Q.
,
Liu
,
B.
, and
Cheng
,
H.
,
2017
, “
Trajectory Tracking Control of a One Degree of Freedom Manipulator Based on a Switched Sliding Mode Controller With a Novel Extended State Observer Framework
,”
IEEE Trans Syst, Man, Cybern: Syst
,
49
(
6
), pp.
1110
1118
.10.1109/TSMC.2017.2719057
20.
Sun
,
B.
, and
Gao
,
Z.
,
2005
, “
A DSP-Based Active Disturbance Rejection Control Design for a 1-kW h-Bridge DC-DC Power Converter
,”
IEEE Trans. Ind. Electron.
,
52
(
5
), pp.
1271
1277
.10.1109/TIE.2005.855679
21.
Chang
,
X.
,
Li
,
Y.
,
Zhang
,
W.
,
Wang
,
N.
, and
Xue
,
W.
,
2015
, “
Active Disturbance Rejection Control for a Flywheel Energy Storage System
,”
IEEE Trans. Ind. Electron.
,
62
(
2
), pp.
991
1001
.10.1109/TIE.2014.2336607
22.
Tondu
,
B.
, and
Lopez
,
P.
,
1994
, “
Static and Dynamic Characteristics of McKibben Pneumatic Artificial Muscles
,”
IEEE
International Conference on Robotics and Automation, San Diego, CA, May 8–13, pp.
281
286
.10.1109/ROBOT.1994.350977
23.
Zhao
,
L.
,
Cheng
,
H.
, and
Wang
,
T.
,
2018
, “
Sliding Mode Control for a Two-Joint Coupling Nonlinear System Based on Extended State Observer
,”
ISA Trans.
,
73
, pp.
130
140
.10.1016/j.isatra.2017.12.027
24.
Kobayashi
,
H.
, and
Ozawa
,
R.
,
2003
, “
Adaptive Neural Network Control of Tendon-Driven Mechanisms With Elastic Tendons
,”
Automatica
,
39
(
9
), pp.
1509
1519
.10.1016/S0005-1098(03)00142-0
25.
Zhao
,
L.
,
Yang
,
Y.
,
Xia
,
Y.
, and
Liu
,
Z.
,
2015
, “
Active Disturbance Rejection Position Control for a Magnetic Rodless Pneumatic Cylinder
,”
IEEE Trans. Ind. Electron.
,
62
(
9
), pp.
5838
5846
.10.1109/TIE.2015.2418319
26.
Yu
,
L.
,
Liu
,
H.
, and
Peng
,
G.
,
2008
, “
Kinematics and Dynamics of 5-Finger Dexterous Hand
,”
Trans. Beijing Inst. Technol.
,
28
(
10
), pp.
880
884
.10.1080/00207540801918588
27.
Chen
,
W.
,
Yang
,
J.
,
Guo
,
L.
, and
Li
,
S.
,
2016
, “
Disturbance-Observer-Based Control and Related Methods-An Overview
,”
IEEE Trans. Ind. Electron.
,
63
(
2
), pp.
1083
1095
.10.1109/TIE.2015.2478397
You do not currently have access to this content.