Abstract

The time-optimal path problem for a point mass mobile robot is considered. Given initial and target states, we seek the time optimal path subject to the following constraints: (1) A limitation on its maximal linear acceleration; (2) a speed-dependent nonsliding condition; and (3) a minimal radius of turn. The paper formulates and analyzes the time optimal path problem using standard optimal control formulation with extensive use of the classical Hodograph method. Based on the analysis, the time optimal path consists of five path primitives. Numerical solutions are obtained to support and illustrate the analysis.

References

1.
Pontryagin
,
L. S.
,
Boltyanskii
,
V. G.
,
Gamkrelidze
,
R. V.
, and
Mishckenko
,
E. F.
,
1967
,
The Mathematical Theory of Optimal Processes
,
Wiley
,
New York
.
2.
Dubins
,
L. E.
,
1957
, “
On Curves of Minimal Length With a Constraint on Average Curvature, and With Prescribed Initial and Terminal Positions and Tangents
,”
Am. J. Math.
,
79
(
3
), pp.
497
516
.10.2307/2372560
3.
Reeds
,
J.
, and
Shepp
,
L.
,
1990
, “
Optimal Paths for a Car That Goes Both Forwards and Backwards
,”
Pacific J. Math.
,
145
(
2
), pp.
367
393
.10.2140/pjm.1990.145.367
4.
Hérissé
,
B.
, and
Pepy
,
R.
,
2013
, “
Shortest Paths for the Dubins' Vehicle in Heterogeneous Environments
,”
52nd IEEE Conference on Decision and Control
, Florence, Italy, Dec. 10–13, pp.
4504
4509
. 10.1109/CDC.2013.6760583
5.
Fleury
,
S.
,
Soueres
,
P.
,
Laumond
,
J.-P.
, and
Chatila
,
R.
,
1995
, “
Primitives for Smoothing Mobile Robot Trajectories
,”
IEEE Trans. Rob. Autom.
,
11
(
3
), pp.
441
448
.10.1109/70.388788
6.
Wilde
,
D. K.
,
2009
, “
Computing Clothoid Segments for Trajectory Generation
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, St. Louis, MO, pp.
2440
2445
.10.1109/IROS.2009.5354700
7.
Lepetič
,
M.
,
Klančar
,
G.
,
Škrjanc
,
I.
,
Matko
,
D.
, and
Potočnik
,
B.
,
2003
, “
Time Optimal Path Planning Considering Acceleration Limits
,”
Rob. Auton. Syst.
,
45
(
3–4
), pp.
199
210
.10.1016/j.robot.2003.09.007
8.
Manor
,
G.
,
Ben-Asher
,
J. Z.
, and
Rimon
,
E.
,
2018
, “
Time Optimal Trajectories for a Mobile Robot Under Explicit Acceleration Constraints
,”
IEEE Trans. Aerosp. Electron. Syst.
,
54
(
5
), pp.
2220
2232
.10.1109/TAES.2018.2811158
9.
Lynch
,
K. M.
, and
Park
,
F. C.
,
2017
,
Modern Robotics
,
Cambridge University Press
,
Cambridge, UK
.
10.
Ben-Asher
,
J. Z.
,
2009
,
Optimal Control Theory With Aerospace Applications (AIAA Education Series)
,
AIAA
,
Blacksburg, VA
.
11.
Jajarmi
,
A.
, and
Baleanu
,
D.
,
2018
, “
Optimal Control of Nonlinear Dynamical Systems Based on a New Parallel Eigenvalue Decomposition Approach
,”
Optimal Control Appl. Methods
,
39
(
2
), pp.
1071
1083
.10.1002/oca.2397
12.
Jajarmi
,
A.
,
Pariz
,
N.
,
Effati
,
S.
, and
Kamyad
,
A. V.
,
2011
, “
Solving Infinite Horizon Nonlinear Optimal Control Problems Using an Extended Modal Series Method
,”
J. Zhejiang Univ. Sci. C
,
12
(
8
), pp.
667
677
.10.1631/jzus.C1000325
13.
Zhu
,
Z.
,
Schmerling
,
E.
, and
Pavone
,
M.
,
2015
, “
A Convex Optimization Approach to Smooth Trajectories for Motion Planning With Car-Like Robots
,” 54th IEEE Conference on Decision and Control
(CDC)
, Osaka, Japan, Dec. 15–18, pp.
835
842
.10.1109/CDC.2015.7402333
14.
Leitmann
,
G.
,
1981
,
The Calculus of Variations and Optimal Control
,
Springer US
,
Boston, MA
.
15.
Kelley
,
H. J.
,
Kopp
,
R. E.
, and
Moyer
,
H. G.
,
1967
, “
Singular Extremals
,”
Topics in Optimization
,
Academic Press
,
New York
, pp.
63
101
.
You do not currently have access to this content.