Abstract
The time-optimal path problem for a point mass mobile robot is considered. Given initial and target states, we seek the time optimal path subject to the following constraints: (1) A limitation on its maximal linear acceleration; (2) a speed-dependent nonsliding condition; and (3) a minimal radius of turn. The paper formulates and analyzes the time optimal path problem using standard optimal control formulation with extensive use of the classical Hodograph method. Based on the analysis, the time optimal path consists of five path primitives. Numerical solutions are obtained to support and illustrate the analysis.
Issue Section:
Research Papers
References
1.
Pontryagin
,
L. S.
,
Boltyanskii
,
V. G.
,
Gamkrelidze
,
R. V.
, and
Mishckenko
,
E. F.
, 1967
, The Mathematical Theory of Optimal Processes
,
Wiley
,
New York
.2.
Dubins
,
L. E.
, 1957
, “
On Curves of Minimal Length With a Constraint on Average Curvature, and With Prescribed Initial and Terminal Positions and Tangents
,” Am. J. Math.
,
79
(3
), pp. 497
–516
.10.2307/23725603.
Reeds
,
J.
, and
Shepp
,
L.
, 1990
, “
Optimal Paths for a Car That Goes Both Forwards and Backwards
,” Pacific J. Math.
,
145
(2
), pp. 367
–393
.10.2140/pjm.1990.145.3674.
Hérissé
,
B.
, and
Pepy
,
R.
, 2013
, “
Shortest Paths for the Dubins' Vehicle in Heterogeneous Environments
,” 52nd IEEE Conference on Decision and Control
, Florence, Italy, Dec. 10–13, pp. 4504
–4509
. 10.1109/CDC.2013.67605835.
Fleury
,
S.
,
Soueres
,
P.
,
Laumond
,
J.-P.
, and
Chatila
,
R.
, 1995
, “
Primitives for Smoothing Mobile Robot Trajectories
,” IEEE Trans. Rob. Autom.
,
11
(3
), pp. 441
–448
.10.1109/70.3887886.
Wilde
,
D. K.
, 2009
, “
Computing Clothoid Segments for Trajectory Generation
,” IEEE/RSJ
International Conference on Intelligent Robots and Systems
, St. Louis, MO, pp. 2440
–2445
.10.1109/IROS.2009.53547007.
Lepetič
,
M.
,
Klančar
,
G.
,
Škrjanc
,
I.
,
Matko
,
D.
, and
Potočnik
,
B.
, 2003
, “
Time Optimal Path Planning Considering Acceleration Limits
,” Rob. Auton. Syst.
,
45
(3–4
), pp. 199
–210
.10.1016/j.robot.2003.09.0078.
Manor
,
G.
,
Ben-Asher
,
J. Z.
, and
Rimon
,
E.
, 2018
, “
Time Optimal Trajectories for a Mobile Robot Under Explicit Acceleration Constraints
,” IEEE Trans. Aerosp. Electron. Syst.
,
54
(5
), pp. 2220
–2232
.10.1109/TAES.2018.28111589.
Lynch
,
K. M.
, and
Park
,
F. C.
, 2017
, Modern Robotics
,
Cambridge University Press
, Cambridge, UK
.10.
Ben-Asher
,
J. Z.
, 2009
, Optimal Control Theory With Aerospace Applications (AIAA Education Series)
,
AIAA
, Blacksburg, VA
.11.
Jajarmi
,
A.
, and
Baleanu
,
D.
, 2018
, “
Optimal Control of Nonlinear Dynamical Systems Based on a New Parallel Eigenvalue Decomposition Approach
,” Optimal Control Appl. Methods
,
39
(2
), pp. 1071
–1083
.10.1002/oca.239712.
Jajarmi
,
A.
,
Pariz
,
N.
,
Effati
,
S.
, and
Kamyad
,
A. V.
, 2011
, “
Solving Infinite Horizon Nonlinear Optimal Control Problems Using an Extended Modal Series Method
,” J. Zhejiang Univ. Sci. C
,
12
(8
), pp. 667
–677
.10.1631/jzus.C100032513.
Zhu
,
Z.
,
Schmerling
,
E.
, and
Pavone
,
M.
, 2015
, “
A Convex Optimization Approach to Smooth Trajectories for Motion Planning With Car-Like Robots
,” 54th IEEE Conference on Decision and Control (CDC)
, Osaka, Japan, Dec. 15–18, pp. 835
–842
.10.1109/CDC.2015.740233314.
Leitmann
,
G.
, 1981
, The Calculus of Variations and Optimal Control
,
Springer US
,
Boston, MA
.15.
Kelley
,
H. J.
,
Kopp
,
R. E.
, and
Moyer
,
H. G.
, 1967
, “
Singular Extremals
,” Topics in Optimization
,
Academic Press
, New York
, pp. 63
–101
.Copyright © 2020 by ASME
You do not currently have access to this content.