Abstract

Point-to-point path planning in an obstacle-free environment, for a kinematic model of a differential-drive wheeled mobile robot with the goal of minimizing input energy is the focus of this work. An optimal control problem is formulated to determine the necessary conditions for optimality and the resulting two-point boundary value problem is solved in closed form using Jacobi elliptic functions. The resulting nonlinear programming problem is solved for two variables and the results are compared to the traditional shooting method to illustrate that the Jacobi elliptic functions parameterize the exact profile of the optimal trajectory. A set of terminal constraints which lie on a circle in the first quadrant are used to generate a set of optimal solutions. It is noted that for maneuvers where the angle of the vector connecting the initial and terminal point is greater than a threshold, the robot initially moves into the third quadrant before terminating in the first quadrant. The minimum energy solution is compared to two other optimal control formulations: (1) an extension of the Dubins vehicle model where the constant linear velocity of the robot is optimized for and (2) a simple turn and move solution, both of whose optimal paths lie entirely in the first quadrant. Experimental results are used to validate the optimal trajectories of the differential-drive robot.

References

1.
Mercy
,
T.
,
Van Parys
,
R.
, and
Pipeleers
,
G.
,
2018
, “
Spline-Based Motion Planning for Autonomous Guided Vehicles in a Dynamic Environment
,”
IEEE Trans. Control Syst. Technol.
,
26
(
6
), pp.
2182
2189
.10.1109/TCST.2017.2739706
2.
Durrant-Whyte
,
H.
, and
Bailey
,
T.
,
2006
, “
Simultaneous Localization and Mapping: Part I
,”
IEEE Rob. Autom. Mag.
,
13
(
2
), pp.
99
110
.10.1109/MRA.2006.1638022
3.
Jun
,
M.
,
Roumeliotis
,
S. I.
, and
Sukhatme
,
G. S.
,
1999
, “
State Estimation of an Autonomous Helicopter Using Kalman Filtering
,”
IROS
, pp.
1346
1353
.10.1109/IROS.1999.811667
4.
Kanayama
,
Y.
,
Kimura
,
Y.
,
Miyazaki
,
F.
, and
Noguchi
,
T.
,
1990
, “
A Stable Tracking Control Method for an Autonomous Mobile Robot
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
IEEE
, Cincinnati, OH, May 13–18, pp.
384
389
.10.1109/ROBOT.1990.126006
5.
Chen
,
X.
,
Jia
,
Y.
, and
Matsuno
,
F.
,
2014
, “
Tracking Control for Differential-Drive Mobile Robots With Diamond-Shaped Input Constraints
,”
IEEE Trans. Control Syst. Technol.
,
22
(
5
), pp.
1999
2006
.10.1109/TCST.2013.2296900
6.
Horcher
,
A.
, and
Visser
,
R. J.
,
2004
, “
Unmanned Aerial Vehicles: Applications for Natural Resource Management and Monitoring
,”
Proceedings of the Council on Forest Engineering Proceedings
, Hot Springs, AR, Apr. 27–30.
7.
Adams
,
S. M.
, and
Friedland
,
C. J.
,
2011
, “
A Survey of Unmanned Aerial Vehicle (UAV) Usage for Imagery Collection in Disaster Research and Management
,”
Ninth International Workshop on Remote Sensing for Disaster Response
, Stanford, CA, Sept. 15–16, p.
8
.
8.
Ogunbodede
,
O.
,
Nandi
,
S.
, and
Singh
,
T.
,
2019
, “
Periodic Control of Unmanned Aerial Vehicles Based on Differential Flatness
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
7
), p. 071003.10.1115/1.4043114
9.
Dubins
,
L. E.
,
1957
, “
On Curves of Minimal Length With a Constraint on Average Curvature, and With Prescribed Initial and Terminal Positions and Tangents
,”
Am. J. Math.
,
79
(
3
), pp.
497
516
.10.2307/2372560
10.
Reeds
,
J.
, and
Shepp
,
L.
,
1990
, “
Optimal Paths for a Car That Goes Both Forwards and Backwards
,”
Pacific J. Math.
,
145
(
2
), pp.
367
393
.10.2140/pjm.1990.145.367
11.
Jones
,
J. L.
,
2006
, “
Robots at the Tipping Point: The Road to Irobot Roomba
,”
IEEE Rob. Autom. Mag.
,
13
(
1
), pp.
76
78
.10.1109/MRA.2006.1598056
12.
Voth
,
D.
,
2005
, “
Segway to the Future [Autonomous Mobile Robot]
,”
IEEE Intell. Syst.
,
20
(
3
), pp.
5
8
.10.1109/MIS.2005.50
13.
LaValle
,
S. M.
,
2006
,
Planning Algorithms
,
Cambridge University Press
, New York.
14.
Pathak
,
K.
, and
Agrawal
,
S. K.
,
2005
, “
An Integrated Path-Planning and Control Approach for Nonholonomic Unicycles Using Switched Local Potentials
,”
IEEE Trans. Rob.
,
21
(
6
), pp.
1201
1208
.10.1109/TRO.2005.853484
15.
Do
,
K. D.
,
2008
, “
Formation Tracking Control of Unicycle-Type Mobile Robots With Limited Sensing Ranges
,”
IEEE Trans. Control Syst. Technol.
,
16
(
3
), pp.
527
538
.10.1109/TCST.2007.908214
16.
Cedervall
,
S.
, and
Hu
,
X.
,
2007
, “
Nonlinear Observers for Unicycle Robots With Range Sensors
,”
IEEE Trans. Autom. Control
,
52
(
7
), pp.
1325
1329
.10.1109/TAC.2007.900843
17.
Kim
,
C. H.
, and
Kim
,
B. K.
,
2008
, “
Minimum-Energy Motion Planning for Differential-Driven Wheeled Mobile Robots
,”
Mobile Robots Motion Planning, New Challenges
, IntechOpen Limited, London, pp.
193
226
.
18.
Liu
,
S.
, and
Sun
,
D.
,
2014
, “
Minimizing Energy Consumption of Wheeled Mobile Robots Via Optimal Motion Planning
,”
IEEE/ASME Trans. Mechatronics
,
19
(
2
), pp.
401
411
.10.1109/TMECH.2013.2241777
19.
Mukherjee
,
R.
,
Emond
,
B. R.
, and
Junkins
,
J. L.
,
1997
, “
Optimal Trajectory Planning for Mobile Robots Using Jacobian Elliptic Functions
,”
Int. J. Rob. Res.
,
16
(
6
), pp.
826
839
.10.1177/027836499701600607
20.
Kim
,
C. H.
, and
Kim
,
B. K.
,
2007
, “
Minimum-Energy Translational Trajectory Generation for Differential-Driven Wheeled Mobile Robots
,”
J. Intell. Rob. Syst.
,
49
(
4
), pp.
367
383
.10.1007/s10846-007-9142-0
21.
Hindle
,
T.
, and
Singh
,
T.
,
2001
, “
Robust Minimum Power/Jerk Control of Maneuvering Structures
,”
AIAA J. Guid., Control Dyn.
,
24
(
4
), pp.
816
826
.10.2514/2.4783
You do not currently have access to this content.