Abstract
Point-to-point path planning in an obstacle-free environment, for a kinematic model of a differential-drive wheeled mobile robot with the goal of minimizing input energy is the focus of this work. An optimal control problem is formulated to determine the necessary conditions for optimality and the resulting two-point boundary value problem is solved in closed form using Jacobi elliptic functions. The resulting nonlinear programming problem is solved for two variables and the results are compared to the traditional shooting method to illustrate that the Jacobi elliptic functions parameterize the exact profile of the optimal trajectory. A set of terminal constraints which lie on a circle in the first quadrant are used to generate a set of optimal solutions. It is noted that for maneuvers where the angle of the vector connecting the initial and terminal point is greater than a threshold, the robot initially moves into the third quadrant before terminating in the first quadrant. The minimum energy solution is compared to two other optimal control formulations: (1) an extension of the Dubins vehicle model where the constant linear velocity of the robot is optimized for and (2) a simple turn and move solution, both of whose optimal paths lie entirely in the first quadrant. Experimental results are used to validate the optimal trajectories of the differential-drive robot.