Abstract

A controller for critical vehicle maneuvering is proposed that avoids obstacles and keeps the vehicle on the road while achieving heavy braking. It operates at the limit of friction and is structured in two main steps: a motion-planning step based on receding-horizon planning to obtain acceleration-vector references, and a low-level controller for following these acceleration references and transforming them into actuator commands. The controller is evaluated in a number of challenging scenarios and results in a well behaved vehicle with respect to, e.g., the steering angle, the body slip, and the path. It is also demonstrated that the controller successfully balances braking and avoidance such that it really takes advantage of the braking possibilities. Specifically, for a moving obstacle, it makes use of a widening gap to perform more braking, which is a clear advantage of the online replanning capability if the obstacle should be a moving human or animal. Finally, real-time capabilities are demonstrated. In conclusion, the controller performs well, both from a functional perspective and from a real-time perspective.

References

1.
Olofsson
,
B.
, and
Nielsen
,
L.
,
2020
, “
Using Crash Databases to Predict Effectiveness of New Autonomous Vehicle Maneuvers for Lane-Departure Injury Reduction
,”
IEEE Trans. Intell. Transp. Syst.
, epub.10.1109/TITS.2020.2983553
2.
SAE International
,
2018
, “
Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles
,”
SAE
Paper No. J3016_201806.https://www.sae.org/standards/content/j3016_201806/
3.
Dingle
,
P.
, and
Guzzella
,
L.
,
2010
, “
Optimal Emergency Maneuvers on Highways for Passenger Vehicles With Two- and Four-Wheel Active Steering
,”
American Control Conference (ACC)
, Baltimore, MD, pp.
5374
5381
.10.1109/ACC.2010.5530760
4.
Gao
,
Y.
,
Gordon
,
T.
, and
Lidberg
,
M.
,
2019
, “
Optimal Control of Brakes and Steering for Autonomous Collision Avoidance Using Modified Hamiltonian Algorithm
,”
Veh. Syst. Dyn.
,
57
(
8
), pp.
1224
1240
.10.1080/00423114.2018.1563706
5.
Brown
,
M.
, and
Gerdes
,
J. C.
,
2020
, “
Coordinating Tire Forces to Avoid Obstacles Using Nonlinear Model Predictive Control
,”
IEEE Trans. Intell. Veh.
,
5
(
1
), pp.
21
31
.10.1109/TIV.2019.2955362
6.
Velenis
,
E.
, and
Tsiotras
,
P.
,
2005
, “
Minimum Time Vs Maximum Exit Velocity Path Optimization During Cornering
,” Proceedings of IEEE International Symposium on Industrial Electronics (
ISIE
), Dubrovnik, Croatia, June 20–23, pp.
355
360
.10.1109/ISIE.2005.1528936
7.
Sharp
,
R. S.
, and
Peng
,
H.
,
2011
, “
Vehicle Dynamics Applications of Optimal Control Theory
,”
Veh. Syst. Dyn.
,
49
(
7
), pp.
1073
1111
.10.1080/00423114.2011.586707
8.
Berntorp
,
K.
,
Olofsson
,
B.
,
Lundahl
,
K.
, and
Nielsen
,
L.
,
2014
, “
Models and Methodology for Optimal Trajectory Generation in Safety-Critical Road-Vehicle Manoeuvres
,”
Veh. Syst. Dyn.
,
52
(
10
), pp.
1304
1332
.10.1080/00423114.2014.939094
9.
Limebeer
,
D.
, and
Rao
,
A.
,
2015
, “
Faster, Higher, and Greener: Vehicular Optimal Control
,”
IEEE Control Syst. Mag.
,
35
(
2
), pp.
36
56
.10.1109/MCS.2014.2384951
10.
Stigson
,
H.
,
Kullgren
,
A.
, and
Rosén
,
E.
,
2012
, “
Injury Risk Functions in Frontal Impacts Using Data From Crash Pulse Recorders
,” 56th Annual Advancement of Automotive Medicine (
AAAM
), Vol.
56
, Seattle, WA, pp.
267
276
.https://www.researchgate.net/publication/233738146_Injury_Risk_Functions_in_Frontal_Impacts_Using_Data_from_Crash_Pulse_Recorders
11.
Subosits
,
J. K.
, and
Gerdes
,
J. C.
,
2019
, “
From the Racetrack to the Road: Real-Time Trajectory Replanning for Autonomous Driving
,”
IEEE Trans. Intell. Veh.
,
4
(
2
), pp.
309
320
.10.1109/TIV.2019.2904390
12.
Svensson
,
L.
,
Bujarbaruah
,
M.
,
Kapania
,
N. R.
, and
Törngren
,
M.
,
2019
, “
Adaptive Trajectory Planning and Optimization at Limits of Handling
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Macau, China, Nov. 3–8, pp.
3942
3948
10.1109/IROS40897.2019.8967679.
13.
Viana
,
I. B.
,
Kanchwala
,
H.
,
Ahiska
,
K.
, and
Aouf
,
N.
,
2021
, “
A Comparison of Trajectory Planning and Control Frameworks for Cooperative Autonomous Driving
,”
ASME. J. Dyn. Sys., Meas., Control
,
143
(
7
), p. 071002.10.1115/1.4049554
14.
Kapania
,
N. R.
, and
Gerdes
,
J. C.
,
2015
, “
Design of a Feedback-Feedforward Steering Controller for Accurate Path Tracking and Stability at the Limits of Handling
,”
Veh. Syst. Dyn.
,
53
(
12
), pp.
1687
1704
.10.1080/00423114.2015.1055279
15.
Yang
,
D.
,
Jacobson
,
B.
,
Jonasson
,
M.
, and
Gordon
,
T. J.
,
2014
, “
Closed-Loop Controller for Post-Impact Vehicle Dynamics Using Individual Wheel Braking and Front Axle Steering
,”
Int. J. Veh. Auton. Syst.
,
12
(
2
), pp.
158
179
.10.1504/IJVAS.2014.060114
16.
Gao
,
Y.
,
Lidberg
,
M.
, and
Gordon
,
T. J.
,
2015
, “
Modified Hamiltonian Algorithm for Optimal Lane Change With Application to Collision Avoidance
,”
MM Sci. J
,
2015
(
01
), pp.
576
584
.10.17973/MMSJ.2015_03_201508
17.
Fors
,
V.
,
Olofsson
,
B.
, and
Nielsen
,
L.
,
2019
, “
Yaw-Moment Control at-the-Limit of Friction Using Individual Front-Wheel Steering and Four-Wheel Braking
,”
Ninth IFAC Symposium on Advances in Automotive Control (AAC)
, Orléans, France, pp.
458
464
.
18.
Gao
,
Y.
,
Lin
,
T.
,
Borrelli
,
F.
,
Tseng
,
E.
, and
Hrovat
,
D.
,
2010
, “
Predictive Control of Autonomous Ground Vehicles With Obstacle Avoidance on Slippery Roads
,”
ASME
Paper No. DSCC2010-4263.10.1115/DSCC2010-4263
19.
Shiller
,
Z.
, and
Sundar
,
S.
,
1998
, “
Emergency Lane-Change Maneuvers of Autonomous Vehicles
,”
ASME. J. Dyn. Sys., Meas., Control
,
120
(
1
), pp.
37
44
.10.1115/1.2801319
20.
Klomp
,
M.
,
Lidberg
,
M.
, and
Gordon
,
T. J.
,
2014
, “
On Optimal Recovery From Terminal Understeer
,”
Proc. Inst. Mech. Eng., Part D
,
228
(
4
), pp.
412
425
.10.1177/0954407013511796
21.
Pacejka
,
H.
,
2006
,
Tyre and Vehicle Dynamics
, 2nd ed.,
Butterworth-Heinemann
,
Oxford, UK
.
22.
Bock
,
H. G.
, and
Plitt
,
K. J.
,
1984
, “
A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems
,”
Ninth IFAC World Congress
, Budapest, Hungary, pp.
1603
1608
.
23.
Andersson
,
J. A. E.
,
Gillis
,
J.
,
Horn
,
G.
,
Rawlings
,
J. B.
, and
Diehl
,
M.
,
2019
, “
CasADi—A Software Framework for Nonlinear Optimization and Optimal Control
,”
Math. Program. Comput.
,
11
(
1
), pp.
1
36
.10.1007/s12532-018-0139-4
24.
Wächter
,
A.
, and
Biegler
,
L. T.
,
2006
, “
On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming
,”
Math. Program.
,
106
(
1
), pp.
25
57
.10.1007/s10107-004-0559-y
25.
HSL
,
2020
, “
A Collection of Fortran Codes for Large Scale Scientific Computation
,” HSL, Harwell, UK, accessed Oct. 26, 2020, http://www.hsl.rl.ac.uk/
26.
Arikere
,
A.
,
Yang
,
D.
, and
Klomp
,
M.
,
2019
, “
Optimal Motion Control for Collision Avoidance at Left Turn Across Path/Opposite Direction Intersection Scenarios Using Electric Propulsion
,”
Veh. Syst. Dyn.
,
57
(
5
), pp.
637
664
.10.1080/00423114.2018.1478107
27.
Subosits
,
J. K.
, and
Gerdes
,
J. C.
,
2017
, “
A Synthetic Input Approach to Slip Angle Based Steering Control for Autonomous Vehicles
,” American Control Conference (
ACC
), Seattle, WA, May 24–26, pp.
2297
2302
.10.23919/ACC.2017.7963295
28.
Wong
,
J. Y.
,
2008
,
Theory of Ground Vehicles
, 4th ed.,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.