Abstract

This paper proposes a robust vibration controller design for active suspension system of in-wheel-motor-driven electric vehicles (IWMD-EVs) based on unified μ-synthesis framework. First, multiple parameter uncertainties and unmodeled high-order dynamics of the suspension are analyzed and discussed. By applying the mixed uncertainties and linear fraction transformation, model perturbations are separated from the suspension system and their perturbation bounds can also be limited. Then, the uncertain quarter-vehicle active suspension model with dynamic damping in-wheel-motor-driven system is established, in which in-wheel motor is suspended as a dynamic vibration absorber. The resulting robust μ-synthesis feedback controller of generalized closed-loop active suspension system is designed with the concept of structured singular value (SSV) μ and μ-synthesis theoretics, and solved via comprehensive solution of the DGK iteration. The μ analysis results show that the μ-controller possesses less conservative stability and performance margins as compared to the H method against system uncertainties. Furthermore, simulations of nominal and perturbed suspension systems are implemented and the corresponding frequency and time-domain responses are compared, and then simulation results confirm that the developed μ-controller is capable of attenuating the negative vibration of the active suspension system compared with H controller and passive suspension.

References

1.
Jin
,
X.
,
Yu
,
Z.
,
Yin
,
G.
, and
Wang
,
J.
,
2018
, “
Improving Vehicle Handling Stability Based on Combined AFS and DYC System Via Robust Takagi-Sugeno Fuzzy Control
,”
IEEE Trans. Intell. Transp. Syst.
,
19
(
8
), pp.
2696
2707
.10.1109/TITS.2017.2754140
2.
Goodarzi
,
A.
, and
Esmailzadeh
,
E.
,
2007
, “
Design of a VDC System for All-Wheel Independent Drive Vehicles
,”
IEEE/ASME Trans. Mechatron.
,
12
(
6
), pp.
632
639
.10.1109/TMECH.2007.910075
3.
Chen
,
Y.
,
Hedrick
,
J. K.
, and
Guo
,
K.
,
2013
, “
A Novel Direct Yaw Moment Controller for In-Wheel Motor Electric Vehicles
,”
Veh. Syst. Dyn.
,
51
(
6
), pp.
925
942
.10.1080/00423114.2013.773453
4.
Jin
,
X.
,
Yin
,
G.
,
Zeng
,
X.
, and
Chen
,
J.
,
2018
, “
Robust Gain-Scheduled Output Feedback Yaw Stability Control for In-Wheel-Motor-Driven Electric Vehicles With External Yaw-Moment
,”
J. Franklin Inst.
,
355
(
18
), pp.
9271
9297
.10.1016/j.jfranklin.2017.07.006
5.
Zheng
,
B.
, and
Anwar
,
S.
,
2009
, “
Yaw Stability Control of a Steer-by-Wire Equipped Vehicle Via Active Front Wheel Steering
,”
Mechatronics
,
19
(
6
), pp.
799
804
.10.1016/j.mechatronics.2009.04.005
6.
Nam
,
K.
,
Fujimoto
,
H.
, and
Hori
,
Y.
,
2014
, “
Advanced Motion Control of Electric Vehicles Based on Robust Lateral Tire Force Control Via Active Front Steering
,”
IEEE/ASME Trans. Mechatron.
,
19
(
1
), pp.
289
299
.10.1109/TMECH.2012.2233210
7.
Chen
,
Y.
, and
Wang
,
J.
,
2013
, “
Adaptive Energy-Efficient Control Allocation for Planar Motion Control of Over-Actuated Electric Ground Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
22
(
4
), pp.
1362
1373
.10.1109/TCST.2013.2287560
8.
Poussot-Vassal
,
C.
,
Sename
,
O.
,
Dugard
,
L.
, and
Savaresi
,
S. M.
,
2011
, “
Vehicle Dynamic Stability Improvements Through Gain-Scheduled Steering and Braking Control
,”
Veh. Syst. Dyn.
,
49
(
10
), pp.
1597
1621
.10.1080/00423114.2010.527995
9.
Yang
,
X.
,
Wang
,
Z.
, and
Peng
,
W.
,
2009
, “
Coordinated Control of AFS and DYC for Vehicle Handling and Stability Based on Optimal Guaranteed Cost Theory
,”
Veh. Syst. Dyn.
,
47
(
1
), pp.
57
79
.10.1080/00423110701882264
10.
Ivanov
,
V.
,
Savitski
,
D.
, and
Shyrokau
,
B.
,
2015
, “
A Survey of Traction Control and Antilock Braking Systems of Full Electric Vehicles With Individually Controlled Electric Motors
,”
IEEE Trans. Veh. Technol.
,
64
(
9
), pp.
3878
3896
.10.1109/TVT.2014.2361860
11.
Dadashnialehi
,
A.
,
Bab-Hadiashar
,
A.
,
Cao
,
Z.
, and
Kapoor
,
A.
,
2015
, “
Intelligent Sensorless Antilock Braking System for Brushless In-Wheel Electric Vehicles
,”
IEEE Trans. Ind. Electron.
,
62
(
3
), pp.
1629
1638
.10.1109/TIE.2014.2341601
12.
Han
,
K.
,
Lee
,
B.
, and
Choi
,
S. B.
,
2019
, “
Development of an Antilock Brake System for Electric Vehicles Without Wheel Slip and Road Friction Information
,”
IEEE Trans. Veh. Technol.
,
68
(
6
), pp.
5506
5517
.10.1109/TVT.2019.2911687
13.
Luo
,
Y.
, and
Tan
,
D.
,
2012
, “
Study on the Dynamics of the In-Wheel Motor System
,”
IEEE Trans. Veh. Technol.
,
61
(
8
), pp.
3510
3518
.10.1109/TVT.2012.2207414
14.
Bridgestone
,
C.
,
2017
, “Bridgestone Dynamic-Damping In-Wheel Motor Drive System,” accessed Feb. 18, 2022, http://enginuitysystems.com/files/In-Wheel_Motor.pdf
15.
Kulkarni
,
A.
,
Ranjha
,
S. A.
, and
Kapoor
,
A.
,
2018
, “
A Quarter-Car Suspension Model for Dynamic Evaluations of an In-Wheel Electric Vehicle
,”
Proc. Inst. Mech. Eng., Part D
,
232
(
9
), pp.
1139
1148
.10.1177/0954407017727165
16.
Yang
,
F.
,
Zhao
,
L.
,
Yu
,
Y.
, and
Zhou
,
C.
,
2017
, “
Analytical Description of Ride Comfort and Optimal Damping of Cushion-Suspension for Wheel-Drive Electric Vehicles
,”
Int. J. Automot. Technol.
,
18
(
6
), pp.
1121
1129
.10.1007/s12239-017-0109-2
17.
Wang
,
W.
,
Niu
,
M.
, and
Song
,
Y.
,
2019
, “
Integrated Vibration Control of In-Wheel Motor-Suspensions Coupling System Via Dynamics Parameter Optimization
,”
Shock Vib.
,
2019
, p.
3702919
.10.1155/2019/3702919
18.
Shao
,
X.
,
Naghdy
,
F.
,
Du
,
H.
, and
Qin
,
Y.
,
2019
, “
Coupling Effect Between Road Excitation and an In-Wheel Switched Reluctance Motor on Vehicle Ride Comfort and Active Suspension Control
,”
J. Sound Vib.
,
443
, pp.
683
702
.10.1016/j.jsv.2018.12.012
19.
Long
,
G.
,
Ding
,
F.
,
Zhang
,
N.
,
Zhang
,
J.
, and
Qin
,
A.
,
2020
, “
Regenerative Active Suspension System With Residual Energy for In-Wheel Motor Driven Electric Vehicle
,”
Appl. Energy
,
260
, p.
114180
.10.1016/j.apenergy.2019.114180
20.
Yin
,
G.
,
Chen
,
N.
, and
Li
,
P.
,
2007
, “
Improving Handling Stability Performance of Four-Wheel Steering Vehicle Via μ-Synthesis Robust Control
,”
IEEE Trans. Veh. Technol.
,
56
(
5
), pp.
2432
2439
.10.1109/TVT.2007.899941
21.
Karimi
,
H. R.
,
Duffie
,
N. A.
, and
Dashkovskiy
,
S.
,
2010
, “
Local Capacity H Control for Production Networks of Autonomous Work Systems With Time-Varying Delays
,”
IEEE Trans. Autom. Sci. Eng.
,
7
(
4
), pp.
849
857
.10.1109/TASE.2010.2046735
22.
Shi
,
Y.
, and
Yu
,
B.
,
2009
, “
Output Feedback Stabilization of Networked Control Systems With Random Delays Modeled by Markov Chains
,”
IEEE Trans. Autom. Control
,
54
(
7
), pp.
1668
1674
.10.1109/TAC.2009.2020638
23.
Qiu
,
J.
,
Ding
,
S. X.
,
Gao
,
H.
, and
Yin
,
S.
,
2016
, “
Fuzzy-Model-Based Reliable Static Output Feedback H Control of Nonlinear Hyperbolic PDE Systems
,”
IEEE Trans. Fuzzy Syst.
,
24
(
2
), pp.
388
400
.10.1109/TFUZZ.2015.2457934
24.
He
,
Z.
, and
Ji
,
X.
,
2012
, “
Nonlinear Robust Control of Integrated Vehicle Dynamics
,”
Veh. Syst. Dyn.
,
50
(
2
), pp.
247
280
.10.1080/00423114.2011.578217
25.
Yuan
,
C.
, and
Wu
,
F.
,
2016
, “
Robust and Switched Feedforward Control of Uncertain LFT Systems
,”
Int. J. Robust Nonlinear Control
,
26
(
9
), pp.
1841
1856
.10.1002/rnc.3380
26.
Zhou
,
K.
, and
Doyle
,
J. C.
,
1998
,
Essentials of Robust Control
,
Prentice Hall
, Upper Saddle River,
NJ
.
27.
Zhang
,
H.
,
Zhang
,
X.
, and
Wang
,
J.
,
2014
, “
Robust Gain-Scheduling Energy-to-Peak Control of Vehicle Lateral Dynamics Stabilisation
,”
Veh. Syst. Dyn.
,
52
(
3
), pp.
309
340
.10.1080/00423114.2013.879190
28.
Cao
,
D.
,
Song
,
X.
, and
Ahmadian
,
M.
,
2011
, “
Editors' Perspectives: Road Vehicle Suspension Design, Dynamics, and Control
,”
Veh. Syst. Dyn.
,
49
(
1–2
), pp.
3
28
.10.1080/00423114.2010.532223
29.
Yu
,
S.
,
Wang
,
F.
,
Wang
,
J.
, and
Chen
,
H.
,
2015
, “
Full-Car Active Suspension Based on H2/Generalised H2 Output Feedback Control
,”
Int. J. Veh. Des.
,
68
(
1/2/3
), pp.
37
54
.10.1504/IJVD.2015.071074
30.
Du
,
H.
, and
Zhang
,
N.
,
2008
, “
Designing H/GH2 Static-Output Feedback Controller for Vehicle Suspensions Using Linear Matrix Inequalities and Genetic Algorithms
,”
Veh. Syst. Dyn.
,
46
(
5
), pp.
385
412
.10.1080/00423110701407013
31.
Li
,
P.
,
Lam
,
J.
, and
Cheung
,
K. C.
,
2014
, “
Multi-Objective Control for Active Vehicle Suspension With Wheelbase Preview
,”
J. Sound Vib.
,
333
(
21
), pp.
5269
5282
.10.1016/j.jsv.2014.06.017
32.
Jin
,
X.
,
Yin
,
G.
,
Bian
,
C.
,
Chen
,
J.
,
Li
,
P.
, and
Chen
,
N.
,
2016
, “
Gain-Scheduled Vehicle Handling Stability Control Via Integration of Active Front Steering and Suspension Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
138
(
1
), p.
014501
.10.1115/1.4031629
33.
Chen
,
X.
,
Wu
,
L.
,
Yin
,
J.
,
Li
,
J.
, and
Luo
,
J.
,
2019
, “
Robust H Control Design of an Electromagnetic Actuated Active Suspension Considering the Structure Non-Linearity
,”
Proc. Inst. Mech. Eng., Part D: J. Automob. Eng.
,
233
(
4
), pp.
1008
1022
.10.1177/0954407017753231
34.
Zhao
,
J.
,
Wong
,
P. K.
,
Ma
,
X.
, and
Xie
,
Z.
,
2018
, “
Design and Analysis of an Integrated Sliding Mode Control–Two-Point Wheelbase Preview Strategy for a Semi-Active Air Suspension With Stepper Motor-Driven Gas-Filled Adjustable Shock Absorber
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
232
(
9
), pp.
1194
1211
.10.1177/0959651818778217
35.
Wu
,
J.
,
Zhou
,
H.
,
Liu
,
Z.
, and
Gu
,
M.
,
2020
, “
Ride Comfort Optimization Via Speed Planning and Preview Semi-Active Suspension Control for Autonomous Vehicles on Uneven Roads
,”
IEEE Trans. Veh. Technol.
,
69
(
8
), pp.
8343
8355
.10.1109/TVT.2020.2996681
36.
Tang
,
X.
,
Du
,
H.
,
Sun
,
S.
,
Ning
,
D.
,
Xing
,
Z.
, and
Li
,
W.
,
2017
, “
Takagi-Sugeno Fuzzy Control for Semi-Active Vehicle Suspension With a Magnetorheological Damper and Experimental Validation
,”
IEEE/ASME Trans. Mechatron.
,
22
(
1
), pp.
291
300
.10.1109/TMECH.2016.2619361
37.
Kwon
,
B. S.
,
Kang
,
D.
, and
Yi
,
K.
,
2020
, “
Fault-Tolerant Control With State and Disturbance Observers for Vehicle Active Suspension Systems
,”
Proc. Inst. Mech. Eng., Part D: J. Automob. Eng.
,
234
(
7
), pp.
1912
1929
.10.1177/0954407019893835
38.
Li
,
H.
,
Liu
,
H.
,
Gao
,
H.
, and
Shi
,
P.
,
2012
, “
Reliable Fuzzy Control for Active Suspension Systems With Actuator Delay and Fault
,”
IEEE Trans. Fuzzy Syst.
,
20
(
2
), pp.
342
357
.10.1109/TFUZZ.2011.2174244
39.
Afshar
,
K. K.
,
Javadi
,
A.
, and
Jahed-Motlagh
,
M. R.
,
2018
, “
Robust H Control of an Active Suspension System With Actuator Time Delay by Predictor Feedback
,”
IET Control Theory Appl.
,
12
(
7
), pp.
1012
1023
.10.1049/iet-cta.2017.0970
40.
Jin
,
X.
,
Yang
,
J.
,
Li
,
Y.
,
Zhu
,
B.
,
Wang
,
J.
, and
Yin
,
G.
,
2020
, “
Online Estimation of Inertial Parameter for Lightweight Electric Vehicle Using Dual Unscented Kalman Filter Approach
,”
IET Intell. Transp. Syst.
,
14
(
5
), pp.
412
422
.10.1049/iet-its.2019.0458
41.
Tseng
,
H. E.
, and
Hrovat
,
D.
,
2015
, “
State of the Art Survey: Active and Semi-Active Suspension Control
,”
Veh. Syst. Dyn.
,
53
(
7
), pp.
1034
1062
.10.1080/00423114.2015.1037313
42.
Li
,
Y.
,
Sun
,
Y.
, and
Dai
,
X.
,
2013
, “
μ-Synthesis for Frequency Uncertainty of the ICPT System
,”
IEEE Trans. Ind. Electron.
,
60
(
1
), pp.
291
300
.10.1109/TIE.2011.2170394
You do not currently have access to this content.