Abstract

In this work, exergy management strategies (ExMSs) for hybrid electric ground vehicles (HEVs) are developed. The main advantage of using the exergetic framework is the possibility of pursuing unconventional optimization goals that are inaccessible to the standard energy management strategy (EMS). For instance, in military applications, the critical goal of preventing thermal imaging detection from adversary units does not seem achievable with the conventional EMS. On the other hand, the exergy-based framework can be adopted to reduce the vehicle thermal emissions through the minimization of exergy terms related to heat exchange. Moreover, the overall efficiency of the vehicle can be increased through the minimization of the exergy destruction, a quantity that is not quantifiable by energy-based methods. In this paper, the exergetic model of a series hybrid electric military truck and the exergetic model of the electric induction generator are developed and used to formulate and solve two novel exergy management strategies aiming to minimize genset exergy destruction and thermal emissions, respectively. The optimal solutions to the EMS and ExMSs control problems are obtained through Dynamic Programming over two driving missions. The results show that ExMS for the minimization of exergy destruction achieves similar results to the standard EMS, while the ExMS for the minimization of thermal emissions obtains significantly lower thermal emissions compared to the EMS, effectively reducing the thermal imaging detection risk.

References

1.
Mittal
,
V.
,
Novoselich
,
B.
, and
Rodriguez
,
A.
,
2022
, “
Hybridization of us Army Combat Vehicles
,”
SAE
Paper No. 2022-01-0371. 10.4271/2022-01-0371
3.
Kramer
,
D. M.
, and
Parker
,
G. G.
,
2011
, “
Current State of Military Hybrid Vehicle Development
,”
Int. J. Electric Hybrid Veh.
,
3
(
4
), pp.
369
387
.10.1504/IJEHV.2011.044373
4.
Onori
,
S.
,
Serrao
,
L.
, and
Rizzoni
,
G.
,
2016
,
Hybrid Electric Vehicles: Energy Management Strategies
,
Springer
, Berlin.
5.
Moorhouse
,
D. J.
, and
Camberos
,
J. A.
,
2011
,
Exergy Analysis and Design Optimization for Aerospace Vehicles and Systems
,
American Institute of Aeronautics and Astronautics
, Reston, VA.
6.
Tsatsaronis
,
G.
,
2007
, “
Definitions and Nomenclature in Exergy Analysis and Exergoeconomics
,”
Energy
,
32
(
4
), pp.
249
253
.10.1016/j.energy.2006.07.002
7.
Ebrahimgol
,
H.
,
Aghaie
,
M.
,
Zolfaghari
,
A.
, and
Naserbegi
,
A.
,
2020
, “
A Novel Approach in Exergy Optimization of a wwer1000 Nuclear Power Plant Using Whale Optimization Algorithm
,”
Ann. Nucl. Energy
,
145
, p.
107540
.10.1016/j.anucene.2020.107540
8.
Kallio
,
S.
, and
Siroux
,
M.
,
2020
, “
Energy Analysis and Exergy Optimization of Photovoltaic-Thermal Collector
,”
Energies
,
13
(
19
), p.
5106
.10.3390/en13195106
9.
Dong
,
Z.
,
Li
,
D.
,
Wang
,
Z.
, and
Sun
,
M.
,
2018
, “
A Review on Exergy Analysis of Aerospace Power Systems
,”
Acta Astronaut.
,
152
, pp.
486
495
.10.1016/j.actaastro.2018.09.003
10.
Hayes
,
D.
,
Lone
,
M.
,
Whidborne
,
J. F.
,
Camberos
,
J.
, and
Coetzee
,
E.
,
2017
, “
Adopting Exergy Analysis for Use in Aerospace
,”
Prog. Aerosp. Sci.
,
93
, pp.
73
94
.10.1016/j.paerosci.2017.07.004
11.
Naserbegi
,
A.
, and
Aghaie
,
M.
,
2021
, “
Exergy Optimization of Nuclear-Solar Dual Proposed Power Plant Based on GWO Algorithm
,”
Prog. Nucl. Energy
,
140
, p.
103925
.10.1016/j.pnucene.2021.103925
12.
James
,
C.
,
Kim
,
T. Y.
, and
Jane
,
R.
,
2020
, “
A Review of Exergy Based Optimization and Control
,”
Processes
,
8
(
3
), p.
364
.10.3390/pr8030364
13.
Razmara
,
M.
,
Maasoumy
,
M.
,
Shahbakhti
,
M.
, and
Robinett
,
R.
III
,
2015
, “
Optimal Exergy Control of Building HVAC System
,”
Appl. Energy
,
156
, pp.
555
565
.10.1016/j.apenergy.2015.07.051
14.
Jain
,
N.
, and
Alleyne
,
A.
,
2015
, “
Energy-Based Optimal Control of a Vapor Compression System
,”
Energy Convers. Manage.
,
92
, pp.
353
365
.10.1016/j.enconman.2014.12.014
15.
Ray
,
T. K.
,
Ganguly
,
R.
, and
Gupta
,
A.
,
2013
, “
Optimal Control Strategy for Minimization of Exergy Destruction in Boiler Superheater
,”
Energy Convers. Manage.
,
66
, pp.
234
245
.10.1016/j.enconman.2012.10.013
16.
Trinklein
,
E. H.
,
Parker
,
G. G.
,
McCoy
,
T. J.
,
Robinett
,
R. D.
, and
Weaver
,
W. W.
,
2018
, “
Reduced Order Multi-Domain Modeling of Shipboard Systems for Exergy-Based Control Investigations
,”
Nav. Eng. J.
,
130
(
3
), pp.
87
105
.https://www.ingentaconnect.com/contentone/asne/nej/2018/00000130/00000003/art00034;jsessionid=1q0aufpmdeu59.x-ic-live-02
17.
Trinklein
,
E. H.
,
Parker
,
G. G.
, and
McCoy
,
T. J.
,
2020
, “
Modeling, Optimization, and Control of Ship Energy Systems Using Exergy Methods
,”
Energy
,
191
, p.
116542
.10.1016/j.energy.2019.116542
18.
Rakopoulos
,
C. D.
, and
Giakoumis
,
E. G.
,
2006
, “
Second-Law Analyses Applied to Internal Combustion Engines Operation
,”
Prog. Energy Combust. Sci.
,
32
(
1
), pp.
2
47
.10.1016/j.pecs.2005.10.001
19.
Canakci
,
M.
, and
Hosoz
,
M.
,
2006
, “
Energy and Exergy Analyses of a Diesel Engine Fuelled With Various Biodiesels
,”
Energy Sources, Part B
,
1
(
4
), pp.
379
394
.10.1080/15567240500400796
20.
Sayin Kul
,
B.
, and
Kahraman
,
A.
,
2016
, “
Energy and Exergy Analyses of a Diesel Engine Fuelled With Biodiesel-Diesel Blends Containing 5% Bioethanol
,”
Entropy
,
18
(
11
), p.
387
.10.3390/e18110387
21.
Razmara
,
M.
,
Bidarvatan
,
M.
,
Shahbakhti
,
M.
, and
Robinett
,
R.D
, III.
2016
, “
Optimal Exergy-Based Control of Internal Combustion Engines
,”
Appl. Energy
,
183
, pp.
1389
1403
.10.1016/j.apenergy.2016.09.058
22.
Dettù
,
F.
,
Pozzato
,
G.
,
Rizzo
,
D. M.
, and
Onori
,
S.
,
2021
, “
Exergy-Based Modeling Framework for Hybrid and Electric Ground Vehicles
,”
Appl. Energy
,
300
, p.
117320
.10.1016/j.apenergy.2021.117320
23.
Brzezanski
,
M.
, and
Mezyk
,
P.
,
2017
, “
Heat Balance of the Military Vehicle
,”
Combust. Engines
,
56
(
3
), pp.
131
134
.
24.
Pozzato
,
G.
,
Rizzo
,
D. M.
, and
Onori
,
S.
,
2022
, “
Mean-Value Exergy Modeling of Internal Combustion Engines: Characterization of Feasible Operating Regions
,”
ASME J. Dyn. Syst. Meas. Contr.
,
144
(
6
), p.
061009
.10.1115/1.4053945
25.
Pozzato
,
G.
,
Rizzo
,
D.
, and
Onori
,
S.
,
2022
, “
Sensitivity Analysis of a Mean-Value Exergy-Based Internal Combustion Engine Model
,”
SAE
Paper No. 2022-01-0356. 10.4271/2022-01-0356
26.
Mamun
,
A.-A.
,
Liu
,
Z.
,
Rizzo
,
D. M.
, and
Onori
,
S.
,
2019
, “
An Integrated Design and Control Optimization Framework for Hybrid Military Vehicle Using Lithium-Ion Battery and Supercapacitor as Energy Storage Devices
,”
IEEE Trans. Transp. Electrif.
,
5
(
1
), pp.
239
251
.10.1109/TTE.2018.2869038
27.
Kim
,
Y.
,
Salvi
,
A.
,
Siegel
,
J. B.
,
Filipi
,
Z. S.
,
Stefanopoulou
,
A. G.
, and
Ersal
,
T.
,
2014
, “
Hardware-in-the-Loop Validation of a Power Management Strategy for Hybrid Powertrains
,”
Control Eng. Pract.
,
29
, pp.
277
286
.10.1016/j.conengprac.2014.04.008
28.
Mi
,
C.
, and
Masrur
,
M. A.
,
2017
,
Hybrid Electric Vehicles: Principles and Applications With Practical Perspectives
,
Wiley
, Hoboken, NJ.
29.
Serrao
,
L.
,
Onori
,
S.
, and
Rizzoni
,
G.
,
2011
, “
A Comparative Analysis of Energy Management Strategies for Hybrid Electric Vehicles
,”
ASME J. Dyn. Syst. Meas. Contr.
,
133
(
3
), p.
031012
.10.1115/1.4003267
30.
Rosen
,
M. A.
,
2004
, “
Exergy Analysis of Waste Emissions
,”
Encyclopedia of Energy
,
C. J.
Cleveland
, ed.,
Elsevier
,
New York
, pp.
623
632
.
31.
Catenaro
,
E.
,
Rizzo
,
D. M.
, and
Onori
,
S.
,
2021
, “
Experimental Analysis and Analytical Modeling of Enhanced-Ragone Plot
,”
Appl. Energy
,
291
, p.
116473
.10.1016/j.apenergy.2021.116473
32.
Catenaro
,
E.
, and
Onori
,
S.
,
2021
, “
Experimental Data of Lithium-Ion Batteries Under Galvanostatic Discharge Tests at Different Rates and Temperatures of Operation
,”
Data Brief
,
35
, p.
106894
.10.1016/j.dib.2021.106894
33.
Allam
,
A.
,
Onori
,
S.
,
Marelli
,
S.
, and
Taborelli
,
C.
,
2015
, “
Battery Health Management System for Automotive Applications: A Retroactivity-Based Aging Propagation Study
,” 2015 American Control Conference (
ACC
),
IEEE
, Chicago, IL, July 1–3, pp.
703
716
.10.1109/ACC.2015.7170817
34.
Tanim
,
T. R.
,
Shirk
,
M. G.
,
Bewley
,
R. L.
,
Dufek
,
E. J.
, and
Liaw
,
B. Y.
,
2018
, “
Fast Charge Implications: Pack and Cell Analysis and Comparison
,”
J. Power Sources
,
381
, pp.
56
65
.10.1016/j.jpowsour.2018.01.091
35.
Bohacek
,
J.
,
Raudensky
,
M.
, and
Karimi-Sibaki
,
E.
,
2019
, “
Polymeric Hollow Fibers: Uniform Temperature of li-Ion Cells in Battery Modules
,”
Appl. Therm. Eng.
,
159
, p.
113940
.10.1016/j.applthermaleng.2019.113940
36.
Chapman
,
S.
,
2005
,
Electric Machinery Fundamentals
,
The McGraw-Hill Companies
, New York.
37.
Goundar
,
S.
,
Pillai
,
M.
,
Mamun
,
K.
,
Islam
,
F.
, and
Deo
,
R.
,
2015
, “
Real Time Condition Monitoring System for Industrial Motors
,” 2015 2nd Asia-Pacific World Congress on Computer Science and Engineering (
APWC on CSE
),
IEEE
, Nadi, Fiji, Dec. 2–4, pp.
1
9
.10.1109/APWCCSE.2015.7476232
38.
Bellman
,
R.
,
2003
,
Dynamic Programming
,
Dover Publications
, Mineola, NY.
39.
Böhme
,
T. J.
, and
Frank
,
B.
,
2017
,
Hybrid Systems, Optimal Control and Hybrid Vehicles
,
Springer International
,
Cham, Switzerland
, pp.
401
428
.
40.
Sundstrom
,
O.
, and
Guzzella
,
L.
,
2009
, “
A Generic Dynamic Programming Matlab Function
,” 2009 IEEE Control Applications, (CCA) & Intelligent Control, (
ISIC
),
IEEE
, St. Petersburg, Russia, July 8–10, pp.
1625
1630
.10.1109/CCA.2009.5281131
41.
Caton
,
J. A.
,
2000
, “
Operating Characteristics of a Spark-Ignition Engine Using the Second Law of Thermodynamics: Effects of Speed and Load
,”
SAE
Paper No. 2000-01-0952. 10.4271/2000-01-0952
42.
Koprubasi
,
K.
,
2008
, “
Modeling and Control of a Hybrid-Electric Vehicle for Drivability and Fuel Economy Improvements
,” Ph.D. thesis,
The Ohio State University
, Columbus, OH.
43.
Arata
,
J.
,
Leamy
,
M.
, and
Cunefare
,
K.
,
2012
, “
Power-Split Hev Control Strategy Development With Refined Engine Transients
,”
SAE Int. J. Altern. Powertrains
,
1
(
1
), pp.
119
133
.10.4271/2012-01-0629
44.
Liu
,
Z.
,
Mamun
,
A.-A. M.
,
Rizzo
,
D. M.
, and
Onori
,
S.
,
2018
, “
Combined Battery Design Optimization and Energy Management of a Series Hybrid Military Truck
,”
SAE Int. J. Altern. Powertrains
,
7
(
2
), pp.
155
168
.10.4271/08-07-02-0010
45.
Riaz
,
M.
,
2011
, “
Simulation of Electric Machine and Drive Systems
,” accessed Oct. 23, 2023, http://people.ece.umn.edu/users/riaz/
46.
MATLAB
,
2022
, “
Asynchronous Machine
,” accessed Oct. 23, 2023, https://www.mathworks.com/help/sps/powersys/ref/asynchronousmachine.html
47.
Miegeville
,
L.
,
Guerin
,
P.
, and
Dreulle
,
D.
,
2014
, “
Investigation of Correlations Between Driving Patterns and Power Demand of Auxiliary Devices aboard Military Vehicles
,” 2014 IEEE Vehicle Power and Propulsion Conference (
VPPC
),
IEEE
, Coimbra, Portugal, Oct. 27–30, pp.
1
6
.10.1109/VPPC.2014.7007093
48.
Rousseau
,
G.
,
Sinoquet
,
D.
, and
Rouchon
,
P.
,
2007
, “
Constrained Optimization of Energy Management for a Mild-Hybrid Vehicle
,”
Oil Gas Sci. Technol.-Rev. l'IFP
,
62
(
4
), pp.
623
634
.10.2516/ogst:2007056
49.
Butt
,
J. R.
,
2005
, “
A Study of Morphing Wing Effectiveness in Fighter Aircraft Using Exergy Analysis and Global Optimization Techniques
,” Ph.D. thesis,
Virginia Tech
, Blacksburg, VA.
50.
De Madrid
,
A.
,
Dormido
,
S.
, and
Mozrilla
,
F.
,
1999
, “
Reduction of the Dimensionality of Dynamic Programming: A Case Study
,”
Proceedings of the 1999 American Control Conference
,
IEEE
, San Diego, CA, June 2–4, Vol.
4
, pp.
2852
2856
.10.1109/ACC.1999.786593
51.
Sampathnarayanan
,
B.
,
Serrao
,
L.
,
Onori
,
S.
,
Rizzoni
,
G.
, and
Yurkovich
,
S.
,
2009
, “
Model Predictive Control as an Energy Management Strategy for Series Hybrid Electric Vehicles
,”
ASME
Paper No. GTP-19-1460. 10.1115/GTP-19-1460
52.
Grizzle
,
J. W.
,
Lin
,
C. C.
,
Peng
,
H.
, and
Kang
,
J. M.
,
2003
, “
Power Management Strategy for a Parallel Hybrid Electric Truck
,”
IEEE Trans. Control Syst. Technol.
,
11
(
6
), pp.
839
849
.10.1109/T CST.2003.815606
53.
Bazzi
,
A. M.
, and
Krein
,
P. T.
,
2010
, “
Review of Methods for Real-Time Loss Minimization in Induction Machines
,”
IEEE Trans. Ind. Appl.
,
46
(
6
), pp.
2319
2328
.10.1109/TIA.2010.2070475
54.
Torrent
,
M.
, and
Blanqué
,
B.
,
2021
, “
Influence of Equivalent Circuit Resistances on Operating Parameters on Three-Phase Induction Motors With Powers Up to 50 kw
,”
Energies
,
14
(
21
), p.
7130
.10.3390/en14217130
55.
Nasir
,
B. A.
,
2020
, “
An Accurate Iron Core Loss Model in Equivalent Circuit of Induction Machines
,”
J. Energy
,
2020
, pp.
1
10
.10.1155/2020/7613737
56.
Wu
,
Y.
, and
Gao
,
H.
,
2006
, “
Induction-Motor Stator and Rotor Winding Temperature Estimation Using Signal Injection Method
,”
IEEE Trans. Ind. Appl.
,
42
(
4
), pp.
1038
1044
.
57.
Blaabjerg
,
F.
,
2018
,
Control of Power Electronic Converters and Systems: Volume 2
, Vol.
2
,
Academic Press
, New York.
58.
Nocedal
,
J.
, and
Wright
,
S. J.
,
1999
,
Numerical Optimization
,
Springer
, New York.
59.
Ahn
,
K.
, and
Papalambros
,
P.
,
2009
, “
Engine Optimal Operation Lines for Power-Split Hybrid Electric Vehicles
,”
Proc. Inst. Mech. Eng., Part D
,
223
(
9
), pp.
1149
1162
.10.1243/09544070JAUTO1124
You do not currently have access to this content.