Abstract

Information-theoretic motion planning and machine learning through Bayesian inference are exploited to localize and track a dynamic radio frequency (RF) emitter with unknown waveform (uncooperative target). A target-state estimator handles non-Gaussian distributions, while mutual information is utilized to coordinate the motion control of a network of mobile sensors (agents) to minimize measurement uncertainty. The mutual information is computed for pairs of sensors through a four-permutation-with-replacement process. The information surfaces are combined to create a composite map, which is then used by agents to plan their motion for more efficient and effective target estimation and tracking. Simulations and physical experiments involving micro-aerial vehicles with time difference of arrival (TDOA) measurements are performed to evaluate the performance of the algorithm. Results show that when two or three agents are used, the algorithm outperforms state-of-the-art methods. Results also show that for four or more agents, the performance is as competitive as an idealized static sensor network.

References

1.
MacDonald
,
V. H.
, and
Schultheiss
,
P. M.
,
1969
, “
Optimum Passive Bearing Estimation in a Spatially Incoherent Noise Environment
,”
J. Acoust. Soc. Am.
,
46
(
1A
), pp.
37
43
.10.1121/1.1911659
2.
Ancker
,
C. J.
,
1958
, “
Airborne Direction Finding—The Theory of Navigation Errors
,”
IRE Trans. Aeronaut. Navig. Electron.
, ANE-5(
4
), pp.
199
210
.10.1109/TANE3.1958.4201630
3.
Crassidis
,
J. L.
, and
Markley
,
F. L.
,
2003
, “
Unscented Filtering for Spacecraft Attitude Estimation
,”
J. Guid., Control, Dyn.
,
26
(
4
), pp.
536
542
.10.2514/2.5102
4.
Choi
,
J.
,
Ulbrich
,
S.
,
Lichte
,
B.
, and
Maurer
,
M.
,
2013
, “
Multi-Target Tracking Using a 3D-Lidar Sensor for Autonomous Vehicles
,”
16th International IEEE Conference on Intelligent Transportation Systems
,
The Hague, Netherlands
, Oct. 6–9, pp.
881
886
.10.1109/ITSC.2013.6728343
5.
Luo
,
R. C.
,
Yih
,
C.-C.
, and
Su
,
K. L.
,
2002
, “
Multisensor Fusion and Integration: Approaches, Applications, and Future Research Directions
,”
IEEE Sens. J.
,
2
(
2
), pp.
107
119
.10.1109/JSEN.2002.1000251
6.
Bourne
,
J. R.
, and
Leang
,
K. K.
,
2019
, “
Bayesian Estimation of Snow-Avalanche Victim Pose: A Method to Assist Human and/or Robot First Responders to Quickly Locate a Buried Victim
,”
ASME
Paper No. DSCC2019-8946.10.1115/DSCC2019-8946
7.
Bourne
,
J. R.
,
Pardyjak
,
E.
, and
Leang
,
K. K.
,
2019
, “
Coordinated Bayesian-Based Bio-Inspired Plume Source Term Estimation and Source Seeking for Mobile Robots
,”
IEEE Trans. Rob.
,
35
(
4
), pp.
967
986
.10.1109/TRO.2019.2912520
8.
Bourne
,
J. R.
,
Goodell
,
M.
,
He
,
X.
,
Steiner
,
J.
, and
Leang
,
K. K.
,
2020
, “
Decentralized Multi-Agent Information-Theoretic Control for Target Estimation and Localization: Finding Chemical Leaks
,”
Int. J. Rob. Res.
,
39
(
13
), pp.
1525
1548
.10.1177/0278364920957090
9.
Smith
,
D.
, and
Singh
,
S.
,
2006
, “
Approaches to Multisensor Data Fusion in Target Tracking: A Survey
,”
IEEE Trans. Knowl. Data Eng.
,
18
(
12
), pp.
1696
1710
.10.1109/TKDE.2006.183
10.
Wang
,
H.
,
Yao
,
K.
, and
Estrin
,
D.
,
2005
, “
Information-Theoretic Approaches for Sensor Selection and Placement in Sensor Networks for Target Localization and Tracking
,”
J. Commun. Networks
,
7
(
4
), pp.
438
449
.10.1109/JCN.2005.6387986
11.
Wang
,
Z.
, and
Gu
,
D.
,
2012
, “
Cooperative Target Tracking Control of Multiple Robots
,”
IEEE Trans. Ind. Electron.
,
59
(
8
), pp.
3232
3240
.10.1109/TIE.2011.2146211
12.
Hedley
,
M.
, and
Zhai
,
Q.
,
2014
, “
Wireless Sensor Network Using Hybrid TDOA/RSS Tracking of Uncooperative Targets
,” 2014 International Symposium on Wireless Personal Multimedia Communications (
WPMC
),
Sydney, NSW,
Sept. 7–10, pp.
385
390
.10.1109/WPMC.2014.7014849
13.
Carter
,
G.
,
1981
, “
Time Delay Estimation for Passive Sonar Signal Processing
,”
IEEE Trans. Acoust., Speech, Signal Process.
,
29
(
3
), pp.
463
470
.10.1109/TASSP.1981.1163560
14.
Chan
,
Y.-T.
, and
Ho
,
K.
,
1994
, “
A Simple and Efficient Estimator for Hyperbolic Location
,”
IEEE Trans. Signal Process.
,
42
(
8
), pp.
1905
1915
.10.1109/78.301830
15.
Fang
,
B. T.
,
1990
, “
Simple Solutions for Hyperbolic and Related Position Fixes
,”
IEEE Trans. Aerosp. Electron. Syst.
,
26
(
5
), pp.
748
753
.10.1109/7.102710
16.
Ho
,
K.
, and
Xu
,
W.
,
2004
, “
An Accurate Algebraic Solution for Moving Source Location Using TDOA and FDOA Measurements
,”
IEEE Trans. Signal Process.
,
52
(
9
), pp.
2453
2463
.10.1109/TSP.2004.831921
17.
Wang
,
G.
,
Cai
,
S.
,
Li
,
Y.
, and
Ansari
,
N.
,
2016
, “
A Bias-Reduced Nonlinear WLS Method for TDOA/FDOA-Based Source Localization
,”
IEEE Trans. Veh. Technol.
,
65
(
10
), pp.
8603
8615
.10.1109/TVT.2015.2508501
18.
Jin
,
B.
,
Xu
,
X.
, and
Zhang
,
T.
,
2018
, “
Robust Time-Difference-of-Arrival (TDOA) Localization Using Weighted Least Squares With Cone Tangent Plane Constraint
,”
Sensors
,
18
(
3
), p.
778
.10.3390/s18030778
19.
Kovavisaruch
,
L.
, and
Ho
,
K. C.
,
2005
, “
Modified Taylor-Series Method for Source and Receiver Localization Using TDOA Measurements With Erroneous Receiver Positions
,” 2005 IEEE International Symposium on Circuits and Systems (
ISCAS
),
Kobe, Japan
, May 23–26, pp.
2295
2298
.10.1109/ISCAS.2005.1465082
20.
Lu
,
X.
, and
Ho
,
K. C.
,
2006
, “
Taylor-Series Technique for Moving Source Localization in the Presence of Sensor Location Errors
,” 2006 IEEE International Symposium on Circuits and Systems (
ISCAS
)
,
Kos, Greece
, May 21–24, pp.
1075
1078
.10.1109/ISCAS.2006.1692775
21.
Cameron
,
K. J.
, and
Bates
,
D. J.
,
2018
, “
Geolocation With FDOA Measurements Via Polynomial Systems and RANSAC
,” 2018 IEEE Radar Conference (
RadarConf18
)
,
Oklahoma City, OK
, Apr. 23–27, pp.
0676
0681
.10.1109/RADAR.2018.8378640
22.
Chan
,
Y.-T.
,
Hang
,
H. Y. C.
, and
Ching
,
P.-C.
,
2006
, “
Exact and Approximate Maximum Likelihood Localization Algorithms
,”
IEEE Trans. Veh. Technol.
,
55
(
1
), pp.
10
16
.10.1109/TVT.2005.861162
23.
Drake
,
S. R.
, and
Dogancay
,
K.
,
2004
, “
Geolocation by Time Difference of Arrival Using Hyperbolic Asymptotes
,”
2004 IEEE International Conference on Acoustics, Speech, and Signal Processing
,
Montreal, QC, Canada
, May 17–21, pp.
361
364
.10.1109/ICASSP.2004.1326269
24.
Díez-González
,
J.
,
Álvarez
,
R.
,
Sánchez-González
,
L.
,
Fernández-Robles
,
L.
,
Pérez
,
H.
, and
Castejón-Limas
,
M.
,
2019
, “
3D TDOA Problem Solution With Four Receiving Nodes
,”
Sensors
,
19
(
13
), p.
2892
.10.3390/s19132892
25.
Musicki
,
D.
, and
Koch
,
W.
,
2008
, “
Geolocation Using TDOA and FDOA Measurements
,”
2008 11th International Conference on Information Fusion
, Cologne, Germany, June 30–July 3, pp.
1
8
.https://www.semanticscholar.org/paper/Geolocationusing-TDOA-and-FDOA-measurements-Musicki-Koch/d9e7083374602cf6d1ce80505ebd7bb49bb8b66a
26.
Okello
,
N.
,
Fletcher
,
F.
,
Musicki
,
D.
, and
Ristic
,
B.
,
2011
, “
Comparison of Recursive Algorithms for Emitter Localisation Using TDOA Measurements From a Pair of UAVs
,”
IEEE Trans. Aerosp. Electron. Syst.
,
47
(
3
), pp.
1723
1732
.10.1109/TAES.2011.5937261
27.
Huang
,
G. P.
,
Zhou
,
K. X.
,
Trawny
,
N.
, and
Roumeliotis
,
S. I.
,
2010
, “
A Bank of Maximum a Posteriori Estimators for Single-Sensor Range-Only Target Tracking
,” Proceedings of the 2010 American Control Conference (
ACC
),
Baltimore, MD
, June 30–July 2, pp.
6974
6980
.10.1109/ACC.2010.5531337
28.
Fletcher
,
F.
,
Ristic
,
B.
, and
Musicki
,
D.
,
2007
, “
Recursive Estimation of Emitter Location Using TDOA Measurements From Two UAVs
,”
2007 10th International Conference on Information Fusion
,
Quebec, QC, Canada
, July 9–12, pp.
1
8
.10.1109/ICIF.2007.4408174
29.
Li
,
Y.
,
Hao
,
C.
,
Li
,
M.
,
He
,
L.
,
Li
,
P.
, and
Wan
,
Q.
,
2019
, “
Moving Target Tracking Using TDOA and FDOA Measurements From Two UAVs With Varying Baseline
,”
J. Phys.: Conf. Ser.
,
1169
(
1
), p.
012013
.10.1088/1742-6596/1169/1/012013
30.
Li
,
Y.
,
Wang
,
X.
, and
Lu
,
X.
,
2020
, “
Combined Carrier Phase and Code Phase Passive Radiation Source Localisation Method
,”
IET Radar, Sonar Navig.
,
14
(
1
), pp.
147
155
.10.1049/iet-rsn.2019.0290
31.
Wu
,
P.
,
Guo
,
Q.
,
Zhang
,
X.
, and
Bo
,
Y.
,
2014
, “
Maneuvering Target Tracking Using Passive TDOA Measurements
,”
Proceedings of the 33rd Chinese Control Conference
,
Nanjing, China
, July 28–30, pp.
758
762
.10.1109/ChiCC.2014.6896722
32.
Gustafsson
,
F.
,
Gunnarsson
,
F.
,
Bergman
,
N.
,
Forssell
,
U.
,
Jansson
,
J.
,
Karlsson
,
R.
, and
Nordlund
,
P.-J.
,
2002
, “
Particle Filters for Positioning, Navigation, and Tracking
,”
IEEE Trans. Signal Process.
,
50
(
2
), pp.
425
437
.10.1109/78.978396
33.
Nordlund
,
P.-J.
,
Gunnarsson
,
F.
, and
Gustafsson
,
F.
,
2002
, “
Particle Filters for Positioning in Wireless Networks
,” European Signal Processing Conference (
EUSIPCO
)
,
Toulouse, France
, Sept. 3–6, pp.
311
314
.https://www.researchgate.net/publication/2543768_Particle_Filters_for_Positioning_in_Wireless_Networks
34.
Zhong
,
X.
,
Tay
,
W. P.
,
Leng
,
M.
,
Razul
,
S. G.
, and
See
,
C. M. S.
,
2016
, “
TDOA-FDOA Based Multiple Target Detection and Tracking in the Presence of Measurement Errors and Biases
,” 2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications (
SPAWC
),
Edinburgh, UK
, July 3–6, pp.
1
6
.10.1109/SPAWC.2016.7536786
35.
Kalman
,
R. E.
, and
Bertram
,
J. E.
,
1960
, “
Control System Analysis and Design Via the “Second Method” of Lyapunov: II Discrete-Time Systems
,”
ASME Trans. ASME J. Basic Eng.
,
82
(
2
), pp.
394
400
.10.1115/1.3662605
36.
Julier
,
S. J.
, and
Uhlmann
,
J. K.
,
1997
, “
New Extension of the Kalman Filter to Nonlinear Systems
,”
Signal Processing, Sensor Fusion, and Target Recognition VI
,
Orlando, FL, Apr. 21–25, pp.
182
193
.10.1117/12.280797
37.
Julier
,
S. J.
, and
Uhlmann
,
J. K.
,
2004
, “
Unscented Filtering and Nonlinear Estimation
,”
Proc. IEEE
,
92
(
3
), pp.
401
422
.10.1109/JPROC.2003.823141
38.
Takabayashi
,
Y.
,
Matsuzaki
,
T.
,
Kameda
,
H.
, and
Ito
,
M.
,
2008
, “
Target Tracking Using TDOA/FDOA Measurements in the Distributed Sensor Network
,”
2008 SICE Annual Conference
,
Chofu, Japan
, Aug. 20–22, pp.
3441
3446
.10.1109/SICE.2008.4655257
39.
Cho
,
J. A.
,
Na
,
H.
,
Kim
,
S.
, and
Ahn
,
C.
,
2012
, “
Moving-Target Tracking Based on Particle Filter With TDOA/FDOA Measurements
,”
Etri J.
,
34
(
2
), pp.
260
263
.10.4218/etrij.12.0211.0218
40.
Seo
,
H.
,
Kim
,
H.
,
Kang
,
J.
,
Jeong
,
I.
,
Ahn
,
W.
, and
Kim
,
S.
,
2019
, “
3D Moving Target Tracking With Measurement Fusion of TDOA/FDOA/AOA
,”
ICT Express
,
5
(
2
), pp.
115
119
.10.1016/j.icte.2018.07.003
41.
Hoffmann
,
G. M.
, and
Tomlin
,
C. J.
,
2010
, “
Mobile Sensor Network Control Using Mutual Information Methods and Particle Filters
,”
IEEE Trans. Autom. Control
,
55
(
1
), pp.
32
47
.10.1109/TAC.2009.2034206
42.
Julian
,
B. J.
,
Angermann
,
M.
,
Schwager
,
M.
, and
Rus
,
D.
,
2012
, “
Distributed Robotic Sensor Networks: An Information-Theoretic Approach
,”
Int. J. Rob. Res.
,
31
(
10
), pp.
1134
1154
.10.1177/0278364912452675
43.
Charrow
,
B.
,
Kumar
,
V.
, and
Michael
,
N.
,
2014
, “
Approximate Representations for Multi-Robot Control Policies That Maximize Mutual Information
,”
Auton. Robots
,
37
(
4
), pp.
383
400
.10.1007/s10514-014-9411-2
44.
Atanasov
,
N. A.
,
2015
,
Active Information Acquisition With Mobile Robots
, Ph.D. dissertation,
University of Pennsylvania
, Philadelphia, PA.https://natanaso.github.io/ref/Atanasov_PhD15.pdf
45.
Ramirez-Paredes
,
J.-P.
,
Doucette
,
E. A.
,
Curtis
,
J. W.
, and
Gans
,
N. R.
,
2016
, “
Optimal Placement for a Limited-Support Binary Sensor
,”
IEEE Rob. Autom. Lett.
,
1
(
1
), pp.
439
446
.10.1109/LRA.2016.2521406
46.
Wang
,
H.
,
Yao
,
K.
,
Pottie
,
G.
, and
Estrin
,
D.
,
2004
, “
Entropy-Based Sensor Selection Heuristic for Target Localization
,”
3rd International Symposium on Information Processing in Sensor Networks, Association for Computing Machinery
,
Berkeley, CA
, Apr. 27, pp.
36
45
.10.1145/984622.984628
47.
Dogancay
,
K.
,
2012
, “
UAV Path Planning for Passive Emitter Localization
,”
IEEE Trans. Aerosp. Electron. Systems
,
48
(
2
), pp.
1150
1166
.10.1109/TAES.2012.6178054
48.
Hamdollahzadeh
,
M.
,
Adelipour
,
S.
, and
Behnia
,
F.
,
2016
, “
Optimal Sensor Configuration for Two Dimensional Source Localization Based on TDOA/FDOA Measurements
,” 2016 17th International Radar Symposium (
IRS
),
Krakow, Poland
, May 10–12, pp.
1
6
.10.1109/IRS.2016.7497276
49.
Zhao
,
Y.
,
Li
,
Z.
,
Hao
,
B.
, and
Shi
,
J.
,
2019
, “
Sensor Selection for TDOA-Based Localization in Wireless Sensor Networks With Non-Line-of-Sight Condition
,”
IEEE Trans. Veh. Technol.
,
68
(
10
), pp.
9935
9950
.10.1109/TVT.2019.2936110
You do not currently have access to this content.