Pt based materials having high electrocatalytic properties are normally used for the electrodes of the fuel cell. But the cost of the material limits the commercialization of alcoholic fuel cell. Non-Pt based metals and alloys as electrode materials for methyl alcohol fuel cells have been investigated with an aim of finding high electrocatalytic surface property for the faster electrode reactions. Electrodes were fabricated by electrodeposition on pure Al foil, from an electrolyte of Ni, Co, and Fe salts. The optimum condition of electrodeposition was found by a series of experiments, varying the chemistry of the electrolyte, pH, temperature, current, and cell potential. Polarization study of the coated Ni–Co or Ni–Co–Fe alloy on pure Al was found to exhibit high exchange current density, indicating an improved electrocatalytic surface with faster charge–discharge reactions at anode and cathode and low overvoltage. Electrochemical impedance studies on the coated and uncoated surface clearly showed that the polarization resistance and impedance were decreased by Ni–Co or N–Co–Fe coating. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), and atomic absorption spectroscopy (AAS) studies confirmed the presence of alloying elements and constituents of the alloy. The morphology of the deposits from scanning electron microscope (SEM) images indicated that the electrode surface was a three-dimensional space which increased the effective surface area for the electrode reactions to take place.

References

1.
Paul
,
S.
, and
Jana
,
A.
,
2007
, “
Study on Bioelectrochemical Fuel Cell With Algae
,”
J. Inst. Eng. Interdiscip. Div.
,
88
(5), pp.
27
30
.,
2.
Paul
,
S.
, and
Mondal
,
P.
,
2006
, “
Pyrolysis of Forest Residue for Production of Bio Fuel
,”
Int. Energy J.
,
7
(
3
), pp.
221
225
.
3.
Paul
,
S.
, and
Mondal
,
P.
,
2009
, “
Fabrication and Characterization of Bioelectrochemical Fuel Cell With Pyrolysed Produced Bio Oil and Hydrolysed Biomass by Fermentation
,”
J. Inst. Eng. Interdiscip. Div.
,
90
(5), pp.
40
45
.
4.
Paul
,
S.
,
2012
, “
Characterization of Bioelectrochemical Fuel Cell Fabricated With Agriculture Wastes and Surface Modified Electrode Materials
,”
ASME J. Fuel Cell Sci. Technol.
,
9
(
2
), p.
021013
.10.1115/1.4005627
5.
Lee
,
J.
,
1997
, “
Biological Conversion of Lignocelluloses Biomass to Ethanol
,”
J. Biotechnol.
,
56
(
1
), pp.
1
24
.10.1016/S0168-1656(97)00073-4
6.
Iranmahbooba
,
J.
,
Nadima
,
F.
, and
Monemib
,
S.
,
2002
, “
Optimizing Acid-Hydrolysis: A Critical Step for Production of Ethanol From Mixed Wood Chips
,”
Biomass Bioenergy
,
22
(
5
), pp.
401
404
.10.1016/S0961-9534(02)00016-8
7.
Schell
,
D. J.
,
Riley
,
C. J.
,
Dowe
,
N.
,
Farmer
,
J.
,
Ibsen
,
K. N.
,
Ruth
,
M. F.
,
Toon
,
S. T.
, and
Lumpkin
,
R. E.
,
2004
, “
A Bioethanol Process Development Unit: Initial Operating Experiences and Results With a Corn Fiber Feedstock
,”
Bioresour. Technol.
,
91
(
2
), pp.
179
188
.10.1016/S0960-8524(03)00167-6
8.
Chaudhuri Swades
,
K.
, and
Lovley
,
D. R.
,
2003
, “
Electricity Generation by Direct Oxidation of Glucose in Mediatorless Microbial Fuel Cells
,”
Nat. Biotechnol.
,
21
(
10
), pp.
1229
1232
.10.1038/nbt867
9.
Kim
,
J. R.
,
Jung
,
S. H.
,
Regan
,
J. M.
, and
Logan
,
B. E.
,
2007
, “
Electricity Generation and Microbial Community Analysis of Alcohol Powered Microbial Fuel Cells
,”
Bioresour. Technol.
,
98
(
13
), pp.
2568
2577
.10.1016/j.biortech.2006.09.036
10.
Wang
,
X.
,
Feng
,
Y. J.
, and
Lee
,
H.
,
2008
, “
Electricity Production From Beer Brewery Wastewater Using Single Chamber Microbial Fuel Cell
,”
Water Sci. Technol.
,
57
(
7
), pp.
1117
1121
.10.2166/wst.2008.064
11.
Basnayake
,
R.
,
Li
,
Z.
,
Katar
,
S.
,
Zhou
,
W.
,
Rivera
,
H.
,
Smotkin
,
E. S.
,
Casadonte
,
D. J., Jr.
, and
Korzeniewski
,
C.
,
2006
, “
PtRu Nanoparticle Electrocatalyst With Bulk Alloy Properties Prepared Through a Sonochemical Method
,”
Langmuir
,
22
(
25
), pp.
10446
10450
.10.1021/la061274o
12.
Bock
,
C.
,
Paquet
,
C. M.
,
Couillard
,
G.
,
Botton
,
A.
, and
MacDougall
,
B. R.
,
2004
, “
Size-Selected Synthesis of PtRu Nano-Catalysts: Reaction and Size Control Mechanism
,”
J. Am. Chem. Soc.
,
126
(
25
), pp.
8028
8037
.10.1021/ja0495819
13.
Shan
,
C.
,
Tsai
,
D. S.
,
Huang
,
Y.-S.
,
Jian
,
S. H.
, and
Cheng
,
C. L.
,
2007
, “
Pt-Ir-IrO2NT Thin-Wall Electrocatalysts Derived From IrO2 Nanotubes and Their Catalytic Activities in Methanol Oxidation
,”
Chem. Mater.
,
19
(
3
), pp.
424
431
.10.1021/cm062085u
14.
Luo
,
J.
,
Njoki
,
P.
,
Lin
,
Y.
,
Wang
,
L.
,
Mott
,
D.
, and
Zhong
,
C.
,
2006
, “
Activity-Composition Correlation of AuPt Alloy Nanoparticle Catalysts in Electrocatalytic Reduction of Oxygen
,”
Electrochem. Commun.
,
8
(
4
), pp.
581
587
.10.1016/j.elecom.2006.02.001
15.
Casado-Rivera
,
E.
,
Volpe
,
D. J.
,
Alden
,
L.
,
Downie
,
C.
,
Vazquez-Alvarez
,
T.
,
Angelo
,
A. C. D.
,
DiSalvo
,
F. J.
, and
Abruna
,
H. D.
,
2004
, “
Electrocatalytic Activity of Ordered Intermetallic Phases for Fuel Cell Applications
,”
J. Am. Chem. Soc.
,
126
(
12
), pp.
4043
4049
.10.1021/ja038497a
16.
Mohamedi
,
M.
,
Hisamitsu
,
Y.
,
Kihara
,
K.
,
Kudo
,
T.
,
Itoh
,
T.
, and
Uchida
,
I.
,
2001
, “
Ni–Al Alloy as Alternative Cathode for Molten Carbonate Fuel Cells
,”
J. Alloys Compd.
,
315
(
1–2
), pp.
224
233
.10.1016/S0925-8388(00)01278-0
17.
Suresh Kumar
,
K.
,
Haridoss
,
P.
, and
Seshadri
,
S. K.
,
2008
, “
Synthesis and Characterization of Electrodeposited Ni–Pd Alloy Electrodes for Methanol Oxidation
,”
Surf. Coat. Technol.
,
202
(
9
), pp.
1764
1770
.10.1016/j.surfcoat.2007.07.035
18.
Cheng
,
S. A.
,
Liu
,
H.
, and
Logan
,
B. E.
,
2006
, “
Increased Power Generation in a Continuous Flow MFC With Advective Flow Through the Porous Anode and Reduced Electrode Spacing
,”
Environ. Sci. Technol.
,
40
(
7
), pp.
364
369
.10.1021/es0512071
19.
Morris
,
J. M.
,
Jin
,
S.
,
Wang
,
J. Q.
,
Zhu
,
C. Z.
, and
Urynowicz
,
M. A.
,
2007
, “
Lead Dioxide as an Alternative Catalyst to Platinum in Microbial Fuel Cells
,”
Electrochem. Commun.
,
9
(
7
), pp.
1730
1734
.10.1016/j.elecom.2007.03.028
20.
Li
,
Y.
,
Lu
,
A. H.
,
Ding
,
H. R.
,
Jin
,
S.
,
Yan
,
Y. H.
,
Wang
,
C. Q.
,
Zen
,
C. P.
, and
Wang
,
X.
,
2009
, “
Cr(VI) Reduction at Rutile-Catalyzed Cathode in Microbial Fuel Cells
,”
Electrochem. Commun.
,
11
(
7
), pp.
1496
1499
.10.1016/j.elecom.2009.05.039
21.
Das
,
D.
,
Sen
,
P. K.
, and
Das
,
K.
,
2006
, “
Electrodeposited MnO2 as Electrocatalyst for Carbohydrate Oxidation
,”
J. Appl. Electrochem.
,
36
(
6
), pp.
685
690
.10.1007/s10800-006-9126-y
22.
Wang
,
J.
,
Holt-Hindle
,
P.
,
MacDonald
,
D.
,
Thomasb
,
D. F.
, and
Chen
,
A.
,
2008
, “
Synthesis and Electrochemical Study of Pt-Based Nanoporous Materials
,”
Electrochim. Acta
,
53
(
23
), pp.
6944
6952
.10.1016/j.electacta.2008.02.028
You do not currently have access to this content.