The performance of fuel cells can be significantly improved by using optimum operating conditions that maximize the power density subject to constraints. Despite its significance, relatively scant work is reported in the open literature on the model-assisted optimization of fuel cells. In this paper, a methodology for model-based optimization is presented by considering a one-dimensional nonisothermal description of a fuel cell operating on reformate feed. The numerical model is coupled with a continuous search simulated annealing optimization scheme to determine the optimum solutions for selected process constraints. Optimization results are presented over a range of fuel cell design parameters to assess the effects of membrane thickness, electrode thickness, constraint values, and CO concentration on the optimum operating conditions.

1.
Larminie
,
J.
, and
Dicks
,
A.
, 2000,
Fuel Cell Systems Explained
,
Wiley
, West Sussex, England.
2.
Marr
,
C.
, and
Li
,
X.
, 1998, “
An engineering model of proton exchange membrane fuel cell performance
,”
ARI—An International Journal fro Physical and Engineering Science
,
50
, pp.
190
200
.
3.
Nguyen
,
T. V.
, and
White
,
R. E.
, 1993, “
A water and heat management model for proton exchange membrane fuel cells
,”
J. Electrochem. Soc.
0013-4651,
140
, pp.
2178
2186
.
4.
Fuller
,
T. F.
, and
Newman
,
J.
, 1993, “
Water and thermal management in solid polymer electrolyte fuel cells
,”
J. Electrochem. Soc.
0013-4651,
140
, pp.
1218
1225
.
5.
Bernardi
,
D. M.
, 1990, “
Water-balance calculations for solid polymer electrolyte fuel cells
,”
J. Electrochem. Soc.
0013-4651,
137
, pp.
3344
3351
.
6.
Zawodzinski
,
T. A.
,
Springer
,
T. A.
,
Davey
,
J.
,
Jestel
,
R.
,
Lopez
,
C.
,
Valero
,
J.
, and
Gottesfeld
,
S.
, 1993, “
A comparative study of water uptake and transport through iononomeric fuel cell membranes
,”
J. Electrochem. Soc.
0013-4651,
140
, pp.
1981
1985
.
7.
Zawodzinski
,
T. A.
,
Derouin
,
C.
,
Radzinski
,
S.
,
Sherman
,
R. J.
,
Smith
,
V. T.
,
Springer
,
T. A.
, and
Gottesfeld
,
S.
, 1993, “
Water uptake by and transport through Nafion 117 membranes
,”
J. Electrochem. Soc.
0013-4651,
140
, pp.
1041
1047
.
8.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1991, ”
Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte
,”
AIChE J.
0001-1541,
37
, pp.
1151
1163
.
9.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1992, “
A mathematical model of the solid polymer electrolyte fuel cell
,”
J. Electrochem. Soc.
0013-4651,
139
, pp.
2477
2745
.
10.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer electrolyte fuel cell model
,”
J. Electrochem. Soc.
0013-4651,
138
, pp.
2334
2342
.
11.
Springer
,
T. E.
,
Wilson
,
M. S.
, and
Gottesfeld
,
S.
, 1993, “
Modeling and experimental diagnostics in polymer electrolyte fuel cells
,”
J. Electrochem. Soc.
0013-4651,
140
, pp.
3513
3526
.
12.
Baschuk
,
J. J.
, and
Li
,
X.
, 2000, “
Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding
,”
J. Power Sources
0378-7753,
86
, pp.
181
196
.
13.
Rowe
,
A.
, and
Li
,
X.
, 2001, “
Mathematical modeling of proton exchange membrane fuel cells
,”
J. Power Sources
0378-7753,
102
, pp.
82
96
.
14.
Amphlett
,
J. C.
,
Baumert
,
R. M.
,
Mann
,
R. F.
,
Peppley
,
B. A.
, and
Roberge
,
P. R.
, 1995, “
Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell
,”
J. Electrochem. Soc.
0013-4651,
142
, pp.
1
15
.
15.
Amphlett
,
J. C.
,
Mann
,
R. F.
,
Peppley
,
B. A.
,
Roberge
,
P. R.
, and
Rodrigues
,
A.
, 1996, “
A model predicting transient responses of proton exchange membrane fuel cells
,”
J. Power Sources
0378-7753,
61
, pp.
183
188
.
16.
Gurau
,
V.
,
Liu
,
H.
, and
Kakac
,
S.
, 1998, “
Two-dimensional model for proton exchange membrane fuel cells
,”
AIChE J.
0001-1541,
44
, pp.
2410
2422
.
17.
Um
,
S.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2000, “
Computational fluid dynamics modeling of proton exchange membrane fuel cells
,”
J. Electrochem. Soc.
0013-4651,
147
, pp.
4485
4493
.
18.
Wang
,
Z. H.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2001, “
Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells
,”
J. Power Sources
0378-7753,
94
, pp.
40
50
.
19.
You
,
L.
, and
Liu
,
H.
, 2002, “
A two-phase flow and transport model for the cathode of PEM fuel cells
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
2277
2287
.
20.
You
,
L.
, 2001, “
The two phase flow, transport mechanism and performance studies for PEM fuel cells
,” Ph. D. dissertation, University of Miami.
21.
Mishra
,
V.
,
Yang
,
F.
, and
Pitchumani
,
R.
, 2005, “
Analysis and Design of PEM Fuel Cells
,”
J. Power Sources
0378-7753,
141
, pp.
47
64
.
22.
Springer
,
T. E.
,
Rockward
,
T.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 2001, “
Model for polymer electrolyte fuel cell operation on reformate feed
,”
J. Electrochem. Soc.
0013-4651,
148
, pp.
A11
A23
.
23.
Fan
,
D.
, and
White
,
R. E.
, 1991, “
Modification of Newman’s BAND(J) subroutine to multi-region systems containing interior boundaries: MBAND
,”
J. Electrochem. Soc.
0013-4651,
138
, pp.
1688
1691
.
24.
Nelder
,
J. A.
, and
Mead
,
R.
, 1965, “
A simplex method for function minimization
,”
Comput. J.
0010-4620,
7
, pp.
308
313
.
25.
Kirkpatrick
,
S.
,
Gelatt
,
C. D.
, and
Vecchi
,
M. P.
, 1983, “
Optimization by simulated annealing
,”
Science
0036-8075,
220
, pp.
671
680
.
26.
Press
,
W. H.
,
Flannery
,
B. P.
,
Teukolsky
,
S. A.
, and
Vettering
,
W. T.
, 1992,
Numerical Recipes in FORTRAN
,
Cambridge University Press
, New York.
27.
Lagarias
,
J. C.
,
Reeds
,
J. A.
,
Wright
,
M. A.
, and
Wright
,
P. E.
, 1998, “
Convergence properties of the Nelder-Mead simplex method in low dimensions
,”
SIAM J. Optim.
1052-6234,
9
, pp.
112
147
.
28.
Metropolis
,
N.
,
Rosenbluth
,
A.
,
Rosenbluth
,
M.
, and
Teller
,
A.
, 1953, “
Equation of state calculations by fast computing machines
,”
J. Chem. Phys.
0021-9606,
21
, pp.
1087
1092
.
29.
Bertsekas
,
D. P.
, 1999,
Nonlinear Programming
,
Athena Scientific
, Belmont MA.
You do not currently have access to this content.