The performance of an alkaline fuel cell (AFC) is investigated using three different fuels, e.g., methanol, ethanol, and sodium borohydride. PtCNi was used as anode, whereas MnO2CNi was used as standard (Electro-Chem-Technic, UK) cathode for all the fuels. Fresh mixture of electrolyte, potassium hydroxide (5M), and fuel (2M) was fed to AFC and withdrawn at a rate of 1mlmin. The anode was prepared by dispersing platinum and activated carbon in Nafion® (DuPont USA) dispersion and placing it onto a carbon paper (Lydall, USA). Finally prepared anode material was pressed onto Ni mesh and sintered to produce the required anode. The maximum power density of 16.5mWcm2 is obtained at 28mAcm2 of current density for sodium borohydride at 25°C, whereas methanol produces 31.5mWcm2 of maximum power density at 44mAcm2 of current density at 60°C. The results obtained showed that the AFC could accept multifuels.

1.
Schulze
,
M.
, and
Gülzou
,
E.
, 2004, “
Degradation of Nickel Anodes in Alkaline Fuel Cells
,”
J. Power Sources
0378-7753,
127
, pp.
252
263
.
2.
Ledjeff-hey
,
K.
,
Formanski
,
V.
,
Kalk
,
T.
, and
Roes
,
J.
, 1998, “
Compact Hydrogen Production Systems for Solid Polymer Fuel Cells
,”
J. Power Sources
0378-7753,
71
, pp.
199
207
.
3.
Li
,
Z. P.
,
Liu
,
B. H.
,
Arai
,
K.
,
Asaba
,
K.
, and
Suda
,
S.
, 2003, “
Evaluation of Alkaline Borohydride Solutions as the Fuel for Fuel Cell
,”
J. Power Sources
0378-7753,
126
, pp.
28
33
.
4.
Verma
,
L. K.
, 2000, “
Studies on Methanol Fuel Cell
,”
J. Power Sources
0378-7753,
86
, pp.
464
468
.
5.
Amendola
,
S. C.
,
Onnerud
,
P.
,
Kelly
,
M. T.
,
Petillo
,
P. J.
,
Sharp-Goldman
,
S. L.
, and
Binder
,
M.
, 1999, “
A Novel High Power Density Borohydride-Air Cell
,”
J. Power Sources
0378-7753,
84
, pp.
130
133
.
6.
Wang
,
Y.
,
Li
,
L.
,
Hu
,
L.
,
Zhuang
,
L.
,
Lu
,
J.
, and
Xu
,
B.
, 2003, “
A Feasibility Analysis for Alkaline Membrane Direct Methanol Fuel Cell: Thermodynamic Disadvantages Versus Kinetic Advantages
,”
Electrochem. Commun.
5
, pp.
662
666
.
7.
Shobha
,
T.
,
Mayanna
,
S. M.
, and
Sequeira
,
C. A. C.
, 2002, “
Preparation and Characterization of Co-W Alloys as Anode Materials for Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
108
, pp.
261
264
.
8.
Aricó
,
A. S.
,
Cretì
,
P.
,
Antonucci
,
P. L.
, and
Antonucci
,
V.
, 1998, “
Comparison of Ethanol and Methanol Oxiation in a Liquid-Feed Solid Polymer Electrolyte Fuel Cell at High Temperature
,”
Electrochem. Solid-State Lett.
1099-0062
1
(
2
), pp.
66
68
.
9.
Ioannides
,
T.
, and
Neophytides
,
S.
, 2000, “
Efficiency of a Solid Polymer Fuel Cell Operating on Ethanol
,”
J. Power Sources
0378-7753,
91
, pp.
150
156
.
10.
Carrette
,
L.
,
Friedrich
,
K. A.
, and
Stimming
,
U.
, 2001, “
Fuel Cells- Fundamentals and Applications
,”
Fuel Cells
1615-6846
1
, pp.
5
39
.
11.
Kordesch
,
K.
,
Gsellmann
,
J.
,
Cifrain
,
M.
,
Voss
,
S.
,
Hacker
,
V.
,
Aronson
,
R. R.
,
Fabjan
,
C.
,
Hejze
,
T.
, and
Daniel-Ivad
,
J.
, 1999, “
Intermittent Use of a Low-Cost Alkaline Fuel Cell-Hybrid System for Electric Vehicles
,”
J. Power Sources
0378-7753,
80
, pp.
190
197
.
12.
Gülzow
,
E.
, and
Schulze
,
M.
, 2003, “
Long-Term Operation of AFC Electrodes With CO2 Containing Gases
,”
J. Power Sources
0378-7753,
127
, pp.
243
251
.
You do not currently have access to this content.