Abstract

Battery aging is an inevitable macroscopic phenomenon in the use of the battery, which is characterized by capacity decline and power reduction. If the charging and discharging strategy does not adjust with the aging state, it is easy to cause battery abuse and accelerate the decline. To avoid this situation, the aging model with consideration of the battery degradation is coupled into the pseudo-two-dimensional (P2D) model. An aging effect-aware finite element model that can describe battery physical information accurately is presented in this article. The model parameters are divided into four parts: structure parameters, thermodynamic parameters, kinetic parameters, and aging parameters. The identification experiments are designed based on the characteristics of these types of parameters. The decoupling and parameter identification methods of kinetic parameters according to the response characteristics of each parameter under specific excitation, and state-of-charge (SOC) partitioned range identification technology of aging parameters is proposed and verified. Finally, the aging effect-aware model and the identification parameters are verified under constant current (CC) and different dynamic conditions with different charge rate (C-rate). The ability of the proposed model to track the aging trajectory in the whole life cycle is verified under various cycle conditions. The proposed model can be applied to aging mechanism analysis and health management from point of inner properties of the batteries.

References

1.
Wu
,
W.
,
Wu
,
W.
,
Qiu
,
X.
, and
Wang
,
S.
,
2018
, “
Low-Temperature Reversible Capacity Loss and Aging Mechanism in Lithium-Ion Batteries for Different Discharge Profiles
,”
Int. J. Energy Res.
,
43
(
1
), pp.
243
253
.
2.
Liu
,
J.
,
Duan
,
Q.
,
Ma
,
M.
,
Zhao
,
C.
,
Sun
,
J.
, and
Wang
,
Q.
,
2020
, “
Aging Mechanisms and Thermal Stability of Aged Commercial 18650 Lithium Ion Battery Induced by Slight Overcharging Cycling
,”
J. Power Sources
,
445
, p.
227263
.
3.
Zhang
,
K.
,
Zheng
,
B.
,
Yang
,
F.
, and
Li
,
Y.
,
2020
, “
Analysis of a Cylindrical Silicon Electrode With a Pre-Existing Crack: Path-Independent Ĵ-Integral
,”
Int. J. Mech. Sci.
,
177
, p.
105602
.
4.
Perassi
,
E. M.
, and
Leiva
,
E. P. M.
,
2019
, “
Capacity Fading Model for a Solid Electrolyte Interface With Surface Growth
,”
Electrochim. Acta
,
308
, pp.
418
425
.
5.
Arora
,
P.
,
Doyle
,
M.
, and
White
,
R. E.
,
1999
, “
Mathematical Modeling of the Lithium Deposition Overcharge Reaction in Lithium-Ion Batteries Using Carbon-Based Negative Electrodes
,”
J. Electrochem. Soc.
,
146
(
10
), pp.
3543
3553
.
6.
Jiang
,
J.
,
Gao
,
Y.
,
Zhang
,
C.
,
Zhang
,
W.
, and
Jiang
,
Y.
,
2019
, “
Lifetime Rapid Evaluation Method for Lithium-Ion Battery With Li(NiMnCo)O2 Cathode
,”
J. Electrochem. Soc.
,
166
(
6
), pp.
A1070
A1081
.
7.
Sun
,
L.
,
Li
,
G.
, and
You
,
F.
,
2020
, “
Combined Internal Resistance and State-of-Charge Estimation of Lithium-Ion Battery Based on Extended State Observer
,”
Renewable Sustainable Energy Rev.
,
131
, p.
109994
.
8.
Xu
,
B.
,
Oudalov
,
A.
,
Ulbig
,
A.
,
Andersson
,
G.
, and
Kirschen
,
D. S.
,
2018
, “
Modeling of Lithium-Ion Battery Degradation for Cell Life Assessment
,”
IEEE Trans. Smart Grid
,
9
(
2
), pp.
1131
1140
.
9.
Li
,
Y.
,
Liu
,
K.
,
Foley
,
A. M.
,
Zülke
,
A.
,
Berecibar
,
M.
,
Nanini-Maury
,
E.
, and
Hoster
,
H. E.
,
2019
, “
Data-Driven Health Estimation and Lifetime Prediction of Lithium-Ion Batteries: A Review
,”
Renewable Sustainable Energy Rev.
,
113
, p.
109254
.
10.
Bermejo
,
R.
,
2021
, “
Numerical Analysis of a Finite Element Formulation of the P2D Model for Lithium-Ion Cells
,”
Numer. Math.
,
149
(
3
), pp.
463
505
.
11.
Kolzenberg
,
L.
,
Latz
,
A.
, and
Horstmann
,
B.
,
2021
, “
Chemo-Mechanical Model of SEI Growth on Silicon Electrode Particles
,”
Batt. Supercaps
,
5
(
2
), p.
2
.
12.
Yang
,
X.-G.
,
Leng
,
Y.
,
Zhang
,
G.
,
Ge
,
S.
, and
Wang
,
C.-Y.
,
2017
, “
Modeling of Lithium Plating Induced Aging of Lithium-Ion Batteries: Transition From Linear to Nonlinear Aging
,”
J. Power Sources
,
360
, pp.
28
40
.
13.
Ren
,
Z.
,
Zhang
,
X.
,
Liu
,
M.
,
Zhou
,
J.
,
Sun
,
S.
,
He
,
H.
, and
Wang
,
D.
,
2019
, “
Constant Dripping Wears Away a Stone: Fatigue Damage Causing Particles’ Cracking
,”
J. Power Sources
,
416
, pp.
104
110
.
14.
Fu
,
R.
,
Xiao
,
M.
, and
Choe
,
S.-Y.
,
2013
, “
Modeling, Validation and Analysis of Mechanical Stress Generation and Dimension Changes of a Pouch Type High Power Li-ion Battery
,”
J. Power Sources
,
224
, pp.
211
224
.
15.
Li
,
H.
,
Chao
,
D.
,
Chen
,
B.
,
Chen
,
X.
,
Chuah
,
C.
,
Tang
,
Y.
,
Jiao
,
Y.
,
Jaroniec
,
M.
, and
Qiao
,
S. Z.
,
2020
, “
Revealing Principles for Design of Lean-Electrolyte Lithium Metal Anode via In Situ Spectroscopy
,”
J. Am. Chem. Soc.
,
142
(
4
), pp.
2012
2022
.
16.
Reniers
,
J. M.
,
Mulder
,
G.
, and
Howey
,
D. A.
,
2019
, “
Review and Performance Comparison of Mechanical-Chemical Degradation Models for Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
166
(
14
), pp.
A3189
A3200
.
17.
Laresgoiti
,
I.
,
Käbitz
,
S.
,
Ecker
,
M.
, and
Sauer
,
D. U.
,
2015
, “
Modeling Mechanical Degradation in Lithium Ion Batteries During Cycling: Solid Electrolyte Interphase Fracture
,”
J. Power Sources
,
300
, pp.
112
122
.
18.
Yoon
,
J.
,
Kim
,
I. T.
,
Bae
,
J.
, and
Hur
,
J.
,
2019
, “
High-Performance ZnS@Graphite Composites Prepared Through Scalable High-Energy Ball Milling as Novel Anodes in Lithium-Ion Batteries
,”
J. Ind. Eng. Chem.
,
76
, pp.
258
267
.
19.
Shen
,
Z.
,
Cao
,
L.
,
Rahn
,
C. D.
, and
Wang
,
C.-Y.
,
2013
, “
Least Squares Galvanostatic Intermittent Titration Technique (LS-GITT) for Accurate Solid Phase Diffusivity Measurement
,”
J. Electrochem. Soc.
,
160
(
10
), pp.
A1842
A1846
.
20.
Xiong
,
R.
,
Li
,
L.
,
Li
,
Z.
,
Yu
,
Q.
, and
Mu
,
H.
,
2018
, “
An Electrochemical Model Based Degradation State Identification Method of Lithium-Ion Battery for All-Climate Electric Vehicles Application
,”
Appl. Energy
,
219
, pp.
264
275
.
21.
Li
,
D.
,
Zhang
,
Y.
,
Sun
,
Q.
,
Zhang
,
S.
,
Wang
,
Z.
,
Liang
,
Z.
,
Si
,
P.
, and
Ci
,
L.
,
2019
, “
Hierarchically Porous Carbon Supported Sn4P3 as a Superior Anode Material for Potassium-Ion Batteries
,”
Energy Stor. Mater.
,
23
, pp.
367
374
.
22.
Hong
,
C.
,
Leng
,
Q.
,
Zhu
,
J.
,
Zheng
,
S.
,
He
,
H.
,
Li
,
Y.
,
Rui
,
L.
,
Wan
,
J.
, and
Yang
,
Y.
,
2020
, “
Revealing the Correlation Between Structural Evolution and Li+ Diffusion Kinetics of Nickel-Rich Cathode Materials in Li-Ion Batteries
,”
J. Mater. Chem. A
,
8
(
17
), pp.
8540
8547
.
23.
Pan
,
K.
,
Zou
,
F.
,
Canova
,
M.
,
Zhu
,
Y.
, and
Kim
,
J.-H.
,
2019
, “
Systematic Electrochemical Characterizations of Si and SiO Anodes for High-Capacity Li-Ion Batteries
,”
J. Power Sources
,
413
, pp.
20
28
.
24.
Muñoz
,
P. M.
,
Humana
,
R. M.
,
Falagüerra
,
T.
, and
Correa
,
G.
,
2020
, “
Parameter Optimization of an Electrochemical and Thermal Model for a Lithium-Ion Commercial Battery
,”
J. Energy Storage
,
32
, p.
10183
.
25.
Zhou
,
S.
,
Liu
,
X.
,
Hua
,
Y.
,
Zhou
,
X.
, and
Yang
,
S.
,
2021
, “
Adaptive Model Parameter Identification for Lithium-Ion Batteries Based on Improved Coupling Hybrid Adaptive Particle Swarm Optimization-Simulated Annealing Method
,”
J. Power Sources
,
482
, p.
228951
.
26.
Wang
,
Y.
,
Li
,
J.
,
Zhang
,
J.
, and
Pecht
,
M.
,
2021
, “
Lithium-Iron-Phosphate Battery Electrochemical Modelling Under a Wide Range of Ambient Temperatures
,”
J. Electroanal. Chem.
,
882
, p.
115041
.
27.
Doyle
,
M.
,
Newman
,
J.
,
Gozdz
,
A. S.
,
Schmutz
,
C. N.
, and
Tarascon
,
J. M.
,
1996
, “
Comparison of Modeling Predictions With Experimental Data From Plastic Lithium Ion Cells
,”
J. Electrochem. Soc.
,
143
(
6
), pp.
1890
1903
.
28.
Gao
,
Y.
,
Jiang
,
J.
,
Zhang
,
C.
,
Zhang
,
W.
,
Ma
,
Z.
, and
Jiang
,
Y.
,
2017
, “
Lithium-Ion Battery Aging Mechanisms and Life Model Under Different Charging Stresses
,”
J. Power Sources
,
356
, pp.
103
114
.
29.
Gao
,
Y.
,
Yang
,
S.
,
Jiang
,
J.
,
Zhang
,
C.
,
Zhang
,
W.
, and
Zhou
,
X.
,
2019
, “
The Mechanism and Characterization of Accelerated Capacity Deterioration for Lithium-Ion Battery With Li(NiMnCo) O2 Cathode
,”
J. Electrochem. Soc.
,
166
(
8
), pp.
A1623
A1635
.
30.
Zhao
,
Y.
,
Stein
,
P.
,
Bai
,
Y.
,
Al-Siraj
,
M.
,
Yang
,
Y.
, and
Xu
,
B.-X.
,
2019
, “
A Review on Modeling of Electro-Chemo-Mechanics in Lithium-Ion Batteries
,”
J. Power Sources
,
413
, pp.
259
283
.
31.
Xu
,
R.
, and
Zhao
,
K.
,
2018
, “
Corrosive Fracture of Electrodes in Li-Ion Batteries
,”
J. Mech. Phys. Solids
,
121
, pp.
258
280
.
32.
Thirumalraj
,
B.
,
Hagos
,
T. T.
,
Huang
,
C. J.
,
Teshager
,
M. A.
,
Cheng
,
J. H.
,
Su
,
W. N.
, and
Hwang
,
B. J.
,
2019
, “
Nucleation and Growth Mechanism of Lithium Metal Electroplating
,”
J. Am. Chem. Soc.
,
141
(
46
), pp.
18612
18623
.
33.
Osswald
,
P. J.
,
Erhard
,
S. V.
,
Wilhelm
,
J.
,
Hoster
,
H. E.
, and
Jossen
,
A.
,
2015
, “
Simulation and Measurement of Local Potentials of Modified Commercial Cylindrical Cells I. Cell Preparation and Measurements
,”
J. Electrochem. Soc.
,
162
(
10
), pp.
A2099
A2105
.
34.
Luo
,
W.
,
Lyu
,
C.
,
Wang
,
L.
, and
Zhang
,
L.
,
2013
, “
A New Extension of Physics-Based Single Particle Model for Higher Charge–Discharge Rates
,”
J. Power Sources
,
241
, pp.
295
310
.
35.
Hu
,
J. S.
, and
Wang
,
B. L.
,
2021
, “
Enhanced Fatigue Performance of Auxetic Honeycomb/Substrate Structures Under Thermal Cycling
,”
Int. J. Mech. Sci.
,
199
, p.
106432
.
36.
Ashwin
,
T. R.
,
McGordon
,
A.
, and
Jennings
,
P. A.
,
2017
, “
A Mass Transfer Based Variable Porosity Model With Particle Radius Change for a Lithium-Ion Battery
,”
Electrochim. Acta
,
232
, pp.
203
214
.
37.
Perkins
,
R. D.
,
Randall
,
A. V.
,
Zhang
,
X.
, and
Plett
,
G. L.
,
2012
, “
Controls Oriented Reduced Order Modeling of Lithium Deposition on Overcharge
,”
J. Power Sources
,
209
, pp.
318
325
.
38.
Huang
,
J.
,
Li
,
Z.
,
Liaw
,
B. Y.
, and
Zhang
,
J.
,
2016
, “
Graphical Analysis of Electrochemical Impedance Spectroscopy Data in Bode and Nyquist Representations
,”
J. Power Sources
,
309
, pp.
82
98
.
39.
Wu
,
S.-L.
,
Zhang
,
W.
,
Song
,
X.
,
Shukla
,
A. K.
,
Liu
,
G.
,
Battaglia
,
V.
, and
Srinivasan
,
V.
,
2012
, “
High Rate Capability of Li(Ni1/3Mn1/3Co1/3)O2Electrode for Li-Ion Batteries
,”
J. Electrochem. Soc.
,
159
(
4
), pp.
A438
A444
.
40.
Han
,
X.
,
Ouyang
,
M.
,
Lu
,
L.
, and
Li
,
J.
,
2015
, “
Simplification of Physics-Based Electrochemical Model for Lithium Ion Battery on Electric Vehicle. Part I: Diffusion Simplification and Single Particle Model
,”
J. Power Sources
,
278
, pp.
802
813
.
41.
Gao
,
Y.
,
Jiang
,
J.
,
Zhang
,
C.
,
Zhang
,
W.
, and
Jiang
,
Y.
,
2018
, “
Aging Mechanisms Under Different State-of-Charge Ranges and the Multi-Indicators System of State-of-Health for Lithium-Ion Battery With Li(NiMnCo)O2 Cathode
,”
J. Power Sources
,
400
, pp.
641
651
.
42.
Hahn
,
M.
,
Buqa
,
H.
,
Ruch
,
P. W.
,
Goers
,
D.
,
Spahr
,
M. E.
,
Ufheil
,
J.
,
Novák
,
P.
, and
Kötz
,
R.
,
2008
, “
A Dilatometric Study of Lithium Intercalation Into Powder-Type Graphite Electrodes
,”
Electrochem. Solid-State Lett.
,
11
(
9
), pp.
A151
A154
.
You do not currently have access to this content.